Li Dun, Lin Jing, Yang Hongxi, Zhou Lihui, Li Yujian, Xu Zhe, Sun Li, Zhang Xinyu, Xu Weili, Wang Yaogang
School of Public Health, Tianjin Medical University, Tianjin, 300070, China.
School of Nursing, Tianjin Medical University, Tianjin, 300070, China.
Cardiovasc Diabetol. 2025 Jun 6;24(1):241. doi: 10.1186/s12933-025-02790-w.
Cardiometabolic multimorbidity (CMM), characterized by the co-existence of two or more cardiometabolic diseases (CMDs) including type 2 diabetes (T2D), coronary artery disease (CAD), and stroke, persists as a global health challenge. However, the causal associations of modifiable factors with CMDs and CMM remains to be systematically investigated.
In this study, a three-stage design Mendelian randomization (MR) investigation was conducted, using two-sample MR with potential sample overlap correction and multiple testing, multivariable MR analysis, and multi-response MR, with modifiable factors covering domains of socioeconomic factors, behavioral factors, biochemical factors, and physical measures as exposures, and CMM and CMDs as outcomes. Updated large-scale genome-wide association study (GWAS) data based on systematic collection from GWAS Catalog were applied.
Our major findings suggested that, 13 of 23 modifiable factors across four domains, including educational attainment (odds ratio: 0.858, 95% confidence interval: 0.834-0.883), household income (0.794, 0.720-0.875), lifetime smoking behavior (1.201, 1.145-1.260), leisure screen time (1.255, 1.186-1.327), low-density lipoprotein cholesterol levels (1.062, 1.046-1.079), total cholesterol levels (1.045, 1.029-1.062), Apolipoprotein B (1.035, 1.019-1.051), fasting glucose (1.096, 1.038-1.157), glycated hemoglobin (HbA1c) (1.062, 1.037-1.089), systolic blood pressure (1.125, 1.104-1.146), diastolic blood pressure (1.104, 1.083-1.126), forced expiratory volume in 1 s (FEV) (0.953, 0.931-0.975), and body mass index (BMI) (1.243, 1.210-1.277) were evaluated with relatively robust effects on CMM. Furthermore, household income, lifetime smoking behavior, HbA1c, systolic blood pressure, and FEV with CMM were detected as independent associations within a single domain. Similar results were observed in each CMD. Moreover, the multi-response MR provided reinforcing evidence for the associations of educational attainment, serum urate, and BMI with CMM, and lifetime smoking behavior, moderate to vigorous intensity physical activity, and leisure screen time with diverse CMDs.
Promoting educational attainment, maintaining favorable serum urate, and controlling obesity are specifically prioritized for CMM prevention. Furthermore, avoiding smoking and sedentary behavior, and strengthening physical activity held prominent protective impacts on CMDs. Additionally, improving dyslipidemia and dysglycemia, maintaining favorable blood pressure, and enhancing lung function, would contribute to the co-management of CMDs and preventing the long-term CMM condition. Our investigation provided causality-oriented evidence to establish the risk profile of CMM.
心脏代谢共病(CMM)以两种或更多种心脏代谢疾病(CMD)并存为特征,包括2型糖尿病(T2D)、冠状动脉疾病(CAD)和中风,仍然是一项全球健康挑战。然而,可改变因素与CMD和CMM之间的因果关联仍有待系统研究。
在本研究中,进行了一项三阶段设计的孟德尔随机化(MR)调查,采用具有潜在样本重叠校正和多重检验的两样本MR、多变量MR分析和多反应MR,将涵盖社会经济因素、行为因素、生化因素和身体测量等领域的可改变因素作为暴露因素,将CMM和CMD作为结局。应用了基于从GWAS Catalog系统收集的最新大规模全基因组关联研究(GWAS)数据。
我们的主要发现表明,四个领域的23个可改变因素中的13个,包括教育程度(优势比:0.858,95%置信区间:0.834 - 0.883)、家庭收入(0.794,0.720 - 0.875)终身吸烟行为(1.201,1.145 - 1.260)、休闲屏幕时间(1.255,1.186 - 1.327)、低密度脂蛋白胆固醇水平(1.062,1.046 - 1.079)、总胆固醇水平(1.045,1.029 - 1.062)、载脂蛋白B(1.035,1.019 - 1.051)、空腹血糖(1.096,1.038 - 1.157)、糖化血红蛋白(HbA1c)(1.062,1.037 - 1.089)、收缩压(1.1第十二点五,1.104 - 1.146)、舒张压(1.104,1.0第八十三点 - 1.126)、一秒用力呼气量(FEV)(0.953,0.931 - 0.975)和体重指数(BMI)(1.243,1.210 - 1.277)对CMM具有相对较强的影响。此外,家庭收入、终身吸烟行为、HbA1c、收缩压和FEV与CMM被检测为单个领域内的独立关联。在每种CMD中也观察到了类似结果。此外,多反应MR为教育程度、血清尿酸和BMI与CMM的关联,以及终身吸烟行为、中度至剧烈强度身体活动和休闲屏幕时间与多种CMD的关联提供了强化证据。
为预防CMM,应特别优先提高教育程度、维持良好的血清尿酸水平和控制肥胖。此外,避免吸烟和久坐行为以及加强身体活动对CMD具有显著的保护作用。此外,改善血脂异常和血糖异常、维持良好的血压以及增强肺功能,将有助于共同管理CMD并预防长期的CMM状况。我们的调查提供了以因果关系为导向的证据,以建立CMM的风险概况。