Suppr超能文献

基于CBCT的下颌切牙管分割的人工智能工具比较:一项验证研究

Comparison of AI-Powered Tools for CBCT-Based Mandibular Incisive Canal Segmentation: A Validation Study.

作者信息

da Andrade-Bortoletto Maria Fernanda Silva, Jindanil Thanatchaporn, Fontenele Rocharles Cavalcante, Jacobs Reinhilde, Freitas Deborah Queiroz

机构信息

Department of Oral Diagnosis, Area of Dental Radiology, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil.

OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Belgium.

出版信息

Clin Oral Implants Res. 2025 Sep;36(9):1086-1094. doi: 10.1111/clr.14455. Epub 2025 Jun 7.

Abstract

OBJECTIVE

Identification of the mandibular incisive canal (MIC) prior to anterior implant placement is often challenging. The present study aimed to validate an enhanced artificial intelligence (AI)-driven model dedicated to automated segmentation of MIC on cone beam computed tomography (CBCT) scans and to compare its accuracy and time efficiency with simultaneous segmentation of both mandibular canal (MC) and MIC by either human experts or a previously trained AI model.

MATERIALS AND METHODS

An enhanced AI model was developed based on 100 CBCT scans using expert-optimized MIC segmentation within the Virtual Patient Creator platform. The performance of the enhanced AI model was tested against human experts and a previously trained AI model using another 40 CBCT scans. Performance metrics included intersection over union (IoU), dice similarity coefficient (DSC), recall, precision, accuracy, and root mean square error (RSME). Time efficiency was also evaluated.

RESULTS

The enhanced AI model had IoU of 93%, DSC of 93%, recall of 94%, precision of 93%, accuracy of 99%, and RMSE of 0.23 mm. These values were significantly higher than those of the previously trained AI model for all metrics, and for manual segmentation for IoU, DSC, recall, and accuracy (p < 0.0001). The enhanced AI model demonstrated significant time efficiency, completing segmentation in 17.6 s (125 times faster than manual segmentation) (p < 0.0001).

CONCLUSION

The enhanced AI model proved to allow a unique and accurate automated MIC segmentation with high accuracy and time efficiency. Besides, its performance was superior to human expert segmentation and a previously trained AI model segmentation.

摘要

目的

在植入前牙种植体之前识别下颌切牙管(MIC)通常具有挑战性。本研究旨在验证一种增强的人工智能(AI)驱动模型,该模型专门用于在锥形束计算机断层扫描(CBCT)图像上自动分割MIC,并将其准确性和时间效率与人类专家或先前训练的AI模型同时分割下颌管(MC)和MIC的情况进行比较。

材料与方法

基于100例CBCT扫描图像,在虚拟患者创建平台内使用专家优化的MIC分割技术,开发了一种增强的AI模型。使用另外40例CBCT扫描图像,针对人类专家和先前训练的AI模型测试了增强AI模型的性能。性能指标包括交并比(IoU)、骰子相似系数(DSC)、召回率、精确率、准确率和均方根误差(RSME)。还评估了时间效率。

结果

增强AI模型的IoU为93%,DSC为93%,召回率为94%,精确率为93%,准确率为99%,RMSE为0.23毫米。在所有指标上,这些值均显著高于先前训练的AI模型,在IoU、DSC、召回率和准确率方面,也显著高于手动分割(p < 0.0001)。增强AI模型显示出显著的时间效率,在17.6秒内完成分割(比手动分割快125倍)(p < 0.0001)。

结论

增强AI模型被证明能够实现独特且准确的MIC自动分割,具有高精度和时间效率。此外,其性能优于人类专家分割和先前训练的AI模型分割。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验