Suppr超能文献

基于边界感知与卷积神经网络-Transformer融合网络的皮肤病变分割中的病变边界检测

Lesion boundary detection for skin lesion segmentation based on boundary sensing and CNN-transformer fusion networks.

作者信息

Huang Xuzhen, Ma Yuliang, Mei Xiajin, Wu Zizhuo, Sun Mingxu, She Qingshan

机构信息

School of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China; Jinan Key Laboratory of Rehabilitation and Evaluation of Motor Dysfunction, The People's Hospital of Huaiyin, Jinan, Shandong 250100, China.

School of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China; Shandong BetR Medical Technology Co., Ltd., Jinan, Shandong 250100, China.

出版信息

Artif Intell Med. 2025 Sep;167:103190. doi: 10.1016/j.artmed.2025.103190. Epub 2025 Jun 4.

Abstract

Traditional convolutional neural networks often struggle to capture global information and handle ambiguous boundaries during complex skin lesion segmentation tasks. To tackle this challenge, we proposed MPBA-Net, a hybrid network that integrates multi-pooling fusion and boundary-aware refinement. The network integrated Convolutional Neural Network (CNN) and Transformer to generate rich skin lesion feature maps for comprehensive feature extraction. Specifically, we introduced a boundary-aware attention gate (BAAG) module in the Transformer encoder layer and added a boundary cross attention (BCA) module at the end of the network to capture critical skin lesion boundary features. Additionally, we developed a multi-pooling fusion (MPF) module that extracts global multi-scale features by fusing improved Spatial Pyramid (SP) and Atrous Spatial Pyramid Pooling (ASPP). To optimize training, we designed a Point Loss derived from Binary Cross-Entropy (BCE) and combined it with Dice Loss to form a hybrid loss function. This approach not only enhances classification performance but also provides more precise measurement of the similarity between segmentation results and ground truth annotations. Ablation experiments on the ISIC2018 dataset validated the effectiveness of our fusion strategies and network improvements. Comparative experiments on the ISIC2016, ISIC2017, and ISIC2018 datasets showed that the Dice index of MPBA-Net outperformed other comparative segmentation methods in all three datasets, achieving 91.47 %, 87.04 %, and 88.93 %, respectively. Quantitative and qualitative results demonstrate that our method improves skin lesion segmentation accuracy, aiding dermatologists in clinical diagnosis and treatment. Our code is available at https://github.com/FengYuchenGuang/MPBA-Net.

摘要

传统卷积神经网络在复杂的皮肤病变分割任务中,往往难以捕捉全局信息并处理模糊边界。为应对这一挑战,我们提出了MPBA-Net,这是一种集成了多池化融合和边界感知细化的混合网络。该网络整合了卷积神经网络(CNN)和Transformer,以生成丰富的皮肤病变特征图,用于全面的特征提取。具体而言,我们在Transformer编码器层引入了边界感知注意力门(BAAG)模块,并在网络末尾添加了边界交叉注意力(BCA)模块,以捕捉关键的皮肤病变边界特征。此外,我们开发了一种多池化融合(MPF)模块,通过融合改进的空间金字塔(SP)和空洞空间金字塔池化(ASPP)来提取全局多尺度特征。为了优化训练,我们设计了一种源自二元交叉熵(BCE)的点损失,并将其与骰子损失相结合,形成一种混合损失函数。这种方法不仅提高了分类性能,还能更精确地衡量分割结果与地面真值注释之间的相似度。在ISIC2018数据集上的消融实验验证了我们融合策略和网络改进的有效性。在ISIC2016、ISIC2017和ISIC2018数据集上的对比实验表明,MPBA-Net的骰子指数在所有三个数据集中均优于其他对比分割方法,分别达到了91.47%、87.04%和88.93%。定量和定性结果表明,我们的方法提高了皮肤病变分割的准确性,有助于皮肤科医生进行临床诊断和治疗。我们的代码可在https://github.com/FengYuchenGuang/MPBA-Net获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验