Cifuentes Lizeth, Anazco Diego, O'Connor Timothy, Hurtado Maria Daniela, Ghusn Wissam, Campos Alejandro, Fansa Sima, McRae Alison, Madhusudhan Sunil, Kolkin Elle, Ryks Michael, Harmsen William S, Ciotlos Serban, Abu Dayyeh Barham K, Hensrud Donald D, Camilleri Michael, Acosta Andres
Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
Phenomix Sciences Inc, Menlo Park, CA, USA.
Cell Metab. 2025 Jun 3. doi: 10.1016/j.cmet.2025.05.008.
Satiation, the process that regulates meal size and termination, varies widely among adults with obesity. To better understand and leverage this variability, we assessed calories to satiation (CTS) through an ad libitum meal, combined with physiological and behavioral evaluations, including calorimetry, imaging, blood sampling, and gastric emptying tests. Although factors like baseline characteristics, body composition, and hormone levels partially explain CTS variability, they leave substantial variability unaccounted for. To address this gap, we developed a machine-learning-assisted genetic risk score (CTS) to predict high CTS. In a randomized clinical trial, participants with high CTS or CTS achieved greater weight loss with phentermine-topiramate over 52 weeks, whereas those with low CTS or CTS responded better to liraglutide at 16 weeks in a separate trial. These findings highlight the potential of combining satiation measurements with genetic modeling to predict treatment outcomes and inform personalized strategies for obesity management.
饱腹感是调节进餐量和进餐结束的过程,在肥胖成年人中差异很大。为了更好地理解和利用这种变异性,我们通过随意进餐评估了饱腹感所需热量(CTS),并结合了生理和行为评估,包括量热法、成像、血液采样和胃排空测试。尽管基线特征、身体成分和激素水平等因素部分解释了CTS的变异性,但仍有很大一部分变异性无法解释。为了填补这一空白,我们开发了一种机器学习辅助的遗传风险评分(CTS)来预测高CTS。在一项随机临床试验中,高CTS或CTS的参与者在52周内使用苯丁胺-托吡酯实现了更大程度的体重减轻,而在另一项单独试验中,低CTS或CTS的参与者在16周时对利拉鲁肽反应更好。这些发现凸显了将饱腹感测量与遗传建模相结合以预测治疗结果并为肥胖管理提供个性化策略的潜力。