Suppr超能文献

用于全身递送的mRNA多聚体胶束的结构稳定性和核糖核酸酶抗性

Structural stability and RNase resistance of mRNA Polyplex micelles for systemic delivery.

作者信息

Dirisala Anjaneyulu, Uchida Satoshi, Toh Kazuko, Li Junjie, Liu Xueying, Wen Panyue, Fukushima Shigeto, Kataoka Kazunori

机构信息

Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan.

Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; Department of Advanced Nanomedical Engineering, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Japan.

出版信息

J Control Release. 2025 Aug 10;384:113935. doi: 10.1016/j.jconrel.2025.113935. Epub 2025 Jun 5.

Abstract

Polycation-based mRNA delivery systems have an issue with mRNA integrity in the physiological milieu, particularly in blood compartments, despite their vast potential in mRNA therapeutics. Without comprehensive mechanistic analyses, design concepts of polyplexes for in vivo use remain unclear. Herein, we systematically assessed several potential design parameters of polyplex stabilization and provided mechanistic insight into the processes of mRNA degradation loaded in polyplexes, focusing on RNase attack, a process believed to be the leading cause of loss of mRNA integrity loaded into polyplexes. For this purpose, polyplex micelles (PMs) from mRNA and poly(ethylene glycol) (PEG)-polycation block copolymer were used as a platform polyplex system feasible for in vivo application. Elongating PEG from 12-kDa to 42-kDa failed to improve RNase stability despite a plausible increase in the PEG layer thickness on the PM surface. Meanwhile, the elongation of polycation segments and a subtle but critical modulation in the side chain of polycation structure, i.e., changing from poly(l-lysine) to poly(l-ornithine), significantly improved the resistance of cargo mRNA against RNase attack. Nonetheless, nearly 50 % of mRNA was degraded even in the optimal PM formulation after 30 min incubation in 50 % serum. Plausible mechanisms of mRNA degradation include (i) dissociation of PM structure by polyion exchange reaction with anionic biomolecules in serum to release mRNA, followed by RNase attack and (ii) RNase penetration into PM interior to directly attack cargo mRNA without PM dissociation. A series of mechanistic experiments revealed that mRNA was still settled in the PMs even after a loss of mRNA integrity by 50 % serum treatment, indicating the latter to be the main reason for the degradation of cargo mRNA. Further, the integrity of PM structure and cargo mRNA in circulating blood was evaluated separately in mice. Intravital microscopic observation of mRNA complexation status using fluorescence resonance energy transfer (FRET) indicates prolonged mRNA retention in the PM structure even under blood circulation. In contrast, quantitative PCR-based evaluation of mRNA integrity revealed the occurrence of prompt mRNA degradation in the same condition. This study highlights that PM structure is robust enough against dissociation under blood circulation. Yet, the remaining challenge toward optimizing PM-based mRNA delivery systems for systemic application is to build a functionality to prevent RNase invasion into the polyplex core storing cargo mRNA.

摘要

基于聚阳离子的mRNA递送系统在生理环境中,尤其是在血液成分中,存在mRNA完整性方面的问题,尽管它们在mRNA治疗领域具有巨大潜力。由于缺乏全面的机理分析,用于体内应用的多聚体的设计概念仍不明确。在此,我们系统地评估了多聚体稳定性的几个潜在设计参数,并深入了解了负载在多聚体中的mRNA降解过程,重点关注核糖核酸酶攻击,这一过程被认为是导致负载到多聚体中的mRNA完整性丧失的主要原因。为此,将由mRNA和聚(乙二醇)(PEG)-聚阳离子嵌段共聚物形成的多聚体胶束(PMs)用作适合体内应用的平台多聚体系统。尽管PM表面的PEG层厚度似乎有所增加,但将PEG从12 kDa延长至42 kDa未能提高核糖核酸酶稳定性。同时,聚阳离子链段的延长以及聚阳离子结构侧链的细微但关键的调节,即从聚(L-赖氨酸)变为聚(L-鸟氨酸),显著提高了负载的mRNA对核糖核酸酶攻击的抗性。尽管如此,在50%血清中孵育30分钟后,即使是最佳的PM制剂中仍有近50%的mRNA被降解。mRNA降解的可能机制包括:(i)通过与血清中的阴离子生物分子发生聚离子交换反应使PM结构解离,从而释放mRNA,随后受到核糖核酸酶攻击;(ii)核糖核酸酶穿透到PM内部直接攻击负载的mRNA而不导致PM解离。一系列机理实验表明即便经过50%血清处理导致mRNA完整性丧失后,mRNA仍保留在PMs中,这表明后者是负载的mRNA降解的主要原因。此外,还分别在小鼠体内评估了循环血液中PM结构和负载的mRNA的完整性。使用荧光共振能量转移(FRET)对mRNA复合状态进行活体显微镜观察表明,即使在血液循环下,mRNA在PM结构中的保留时间也会延长。相比之下,基于定量PCR对mRNA完整性的评估显示在相同条件下会迅速发生mRNA降解。这项研究强调,PM结构在血液循环下具有足够的抗解离能力。然而,要优化基于PM的mRNA递送系统以用于全身应用,剩下的挑战是构建一种功能来防止核糖核酸酶侵入储存负载mRNA的多聚体核心。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验