Wu Qi-Xiang, De Isla Natalia, Zhang Lei
Medical School, Kunming University of Science and Technology, Kunming 650032, China.
Biopôle of Medical School, University of Lorraine, 54000 Vandoeuvre-Lès-Nancy, France.
Int J Mol Sci. 2025 Jul 30;26(15):7384. doi: 10.3390/ijms26157384.
Gene therapy is a groundbreaking strategy in regenerative medicine, enabling precise cellular behavior modulation for tissue repair. In situ nucleic acid delivery systems aim to directly deliver nucleic acids to target cells or tissues to realize localized genetic reprogramming and avoid issues like donor cell dependency and immune rejection. The key to success relies on biomaterial-engineered delivery platforms that ensure tissue-specific targeting and efficient intracellular transport. Viral vectors and non-viral carriers are strategically modified to enhance nucleic acid stability and cellular uptake, and integrate them into injectable or 3D-printed scaffolds. These scaffolds not only control nucleic acid release but also mimic native extracellular microenvironments to support stem cell recruitment and tissue regeneration. This review explores three key aspects: the mechanisms of gene editing in tissue repair; advancements in viral and non-viral vector engineering; and innovations in biomaterial scaffolds, including stimuli-responsive hydrogels and 3D-printed matrices. We evaluate scaffold fabrication methodologies, nucleic acid loading-release kinetics, and their biological impacts. Despite progress in spatiotemporal gene delivery control, challenges remain in balancing vector biocompatibility, manufacturing scalability, and long-term safety. Future research should focus on multifunctional "smart" scaffolds with CRISPR-based editing tools, multi-stimuli responsiveness, and patient-specific designs. This work systematically integrates the latest methodological advances, outlines actionable strategies for future investigations and advances clinical translation perspectives beyond the existing literature.
基因治疗是再生医学中的一项开创性策略,能够精确调节细胞行为以促进组织修复。原位核酸递送系统旨在将核酸直接递送至靶细胞或组织,以实现局部基因重编程,并避免诸如供体细胞依赖性和免疫排斥等问题。成功的关键在于生物材料工程化的递送平台,该平台可确保组织特异性靶向和高效的细胞内运输。对病毒载体和非病毒载体进行策略性修饰,以增强核酸稳定性和细胞摄取,并将它们整合到可注射或3D打印的支架中。这些支架不仅能控制核酸释放,还能模拟天然细胞外微环境以支持干细胞募集和组织再生。本综述探讨了三个关键方面:组织修复中基因编辑的机制;病毒和非病毒载体工程的进展;以及生物材料支架的创新,包括刺激响应性水凝胶和3D打印基质。我们评估了支架制造方法、核酸加载-释放动力学及其生物学影响。尽管在时空基因递送控制方面取得了进展,但在平衡载体生物相容性、制造可扩展性和长期安全性方面仍存在挑战。未来的研究应聚焦于具有基于CRISPR的编辑工具、多刺激响应性和患者特异性设计的多功能“智能”支架。这项工作系统地整合了最新的方法学进展,概述了未来研究的可行策略,并超越现有文献推进了临床转化前景。
Front Cell Dev Biol. 2025-7-25
Bioprocess Biosyst Eng. 2025-5-20
Adv Drug Deliv Rev. 2025-6-9
J Control Release. 2025-8-10
Int J Mol Sci. 2025-4-8
Signal Transduct Target Ther. 2025-3-10