文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于原位组织工程和再生医学的基于生物材料的核酸递送系统

Biomaterial-Based Nucleic Acid Delivery Systems for In Situ Tissue Engineering and Regenerative Medicine.

作者信息

Wu Qi-Xiang, De Isla Natalia, Zhang Lei

机构信息

Medical School, Kunming University of Science and Technology, Kunming 650032, China.

Biopôle of Medical School, University of Lorraine, 54000 Vandoeuvre-Lès-Nancy, France.

出版信息

Int J Mol Sci. 2025 Jul 30;26(15):7384. doi: 10.3390/ijms26157384.


DOI:10.3390/ijms26157384
PMID:40806513
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12346993/
Abstract

Gene therapy is a groundbreaking strategy in regenerative medicine, enabling precise cellular behavior modulation for tissue repair. In situ nucleic acid delivery systems aim to directly deliver nucleic acids to target cells or tissues to realize localized genetic reprogramming and avoid issues like donor cell dependency and immune rejection. The key to success relies on biomaterial-engineered delivery platforms that ensure tissue-specific targeting and efficient intracellular transport. Viral vectors and non-viral carriers are strategically modified to enhance nucleic acid stability and cellular uptake, and integrate them into injectable or 3D-printed scaffolds. These scaffolds not only control nucleic acid release but also mimic native extracellular microenvironments to support stem cell recruitment and tissue regeneration. This review explores three key aspects: the mechanisms of gene editing in tissue repair; advancements in viral and non-viral vector engineering; and innovations in biomaterial scaffolds, including stimuli-responsive hydrogels and 3D-printed matrices. We evaluate scaffold fabrication methodologies, nucleic acid loading-release kinetics, and their biological impacts. Despite progress in spatiotemporal gene delivery control, challenges remain in balancing vector biocompatibility, manufacturing scalability, and long-term safety. Future research should focus on multifunctional "smart" scaffolds with CRISPR-based editing tools, multi-stimuli responsiveness, and patient-specific designs. This work systematically integrates the latest methodological advances, outlines actionable strategies for future investigations and advances clinical translation perspectives beyond the existing literature.

摘要

基因治疗是再生医学中的一项开创性策略,能够精确调节细胞行为以促进组织修复。原位核酸递送系统旨在将核酸直接递送至靶细胞或组织,以实现局部基因重编程,并避免诸如供体细胞依赖性和免疫排斥等问题。成功的关键在于生物材料工程化的递送平台,该平台可确保组织特异性靶向和高效的细胞内运输。对病毒载体和非病毒载体进行策略性修饰,以增强核酸稳定性和细胞摄取,并将它们整合到可注射或3D打印的支架中。这些支架不仅能控制核酸释放,还能模拟天然细胞外微环境以支持干细胞募集和组织再生。本综述探讨了三个关键方面:组织修复中基因编辑的机制;病毒和非病毒载体工程的进展;以及生物材料支架的创新,包括刺激响应性水凝胶和3D打印基质。我们评估了支架制造方法、核酸加载-释放动力学及其生物学影响。尽管在时空基因递送控制方面取得了进展,但在平衡载体生物相容性、制造可扩展性和长期安全性方面仍存在挑战。未来的研究应聚焦于具有基于CRISPR的编辑工具、多刺激响应性和患者特异性设计的多功能“智能”支架。这项工作系统地整合了最新的方法学进展,概述了未来研究的可行策略,并超越现有文献推进了临床转化前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d031/12346993/623e5f316bfd/ijms-26-07384-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d031/12346993/e3f1f4cfa658/ijms-26-07384-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d031/12346993/9d208b607927/ijms-26-07384-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d031/12346993/66d47f00dc6f/ijms-26-07384-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d031/12346993/5d04cb8510a6/ijms-26-07384-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d031/12346993/c007f21a59c5/ijms-26-07384-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d031/12346993/3ff0f88ac9d3/ijms-26-07384-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d031/12346993/6e293421e303/ijms-26-07384-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d031/12346993/c417db963a2e/ijms-26-07384-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d031/12346993/0036c188a1db/ijms-26-07384-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d031/12346993/623e5f316bfd/ijms-26-07384-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d031/12346993/e3f1f4cfa658/ijms-26-07384-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d031/12346993/9d208b607927/ijms-26-07384-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d031/12346993/66d47f00dc6f/ijms-26-07384-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d031/12346993/5d04cb8510a6/ijms-26-07384-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d031/12346993/c007f21a59c5/ijms-26-07384-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d031/12346993/3ff0f88ac9d3/ijms-26-07384-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d031/12346993/6e293421e303/ijms-26-07384-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d031/12346993/c417db963a2e/ijms-26-07384-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d031/12346993/0036c188a1db/ijms-26-07384-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d031/12346993/623e5f316bfd/ijms-26-07384-g009.jpg

相似文献

[1]
Biomaterial-Based Nucleic Acid Delivery Systems for In Situ Tissue Engineering and Regenerative Medicine.

Int J Mol Sci. 2025-7-30

[2]
Hydrogel-driven innovations for targeted delivery, immune modulation, and tissue repair in thyroid cancer therapy.

Front Cell Dev Biol. 2025-7-25

[3]
Trojan Horse-Like Vehicles for CRISPR-Cas Delivery: Engineering Extracellular Vesicles and Virus-Like Particles for Precision Gene Editing in Cystic Fibrosis.

Hum Gene Ther. 2025-4-28

[4]
Advances in Regenerative Medicine, Cell Therapy, and 3D Bioprinting for Corneal, Oculoplastic, and Orbital Surgery.

Adv Exp Med Biol. 2025-3-26

[5]
Extracellular Vesicle-Integrated Biomaterials in Bone Tissue Engineering Applications: Current Progress and Future Perspectives.

Int J Nanomedicine. 2025-6-17

[6]
Vat photo-polymerization 3D printing of gradient scaffolds for osteochondral tissue regeneration.

Acta Biomater. 2025-6-15

[7]
Unlocking the regenerative properties of extraembryonic membrane-derived biomaterials in tissue engineering.

Acta Biomater. 2025-7-16

[8]
Genetic and bioactive functionalization of bioinks for 3D bioprinting.

Bioprocess Biosyst Eng. 2025-5-20

[9]
Process-Structure-Quality Relationships of Three-Dimensional Printed Poly(Caprolactone)-Hydroxyapatite Scaffolds.

Tissue Eng Part A. 2020-3

[10]
3D printed metamaterials: properties, fabrication, and drug delivery applications.

Adv Drug Deliv Rev. 2025-6-9

本文引用的文献

[1]
Clinical Safety and Efficacy of Allogeneic Adipose Stem Cells: A Systematic Review of the Clinical Trials.

Int J Mol Sci. 2025-7-2

[2]
Framework Nucleic Acid Nanomaterials for Central Nervous System Therapies: Design for Barrier Penetration, Targeted Delivery, Cellular Uptake, and Endosomal Escape.

ACS Nano. 2025-7-15

[3]
MiR-126 regulates the effect of mesenchymal stem cell vascular repair on carotid atherosclerosis through MAPK/ERK signaling pathway.

World J Stem Cells. 2025-6-26

[4]
Revolution of AAV in Drug Discovery: From Delivery System to Clinical Application.

J Med Virol. 2025-6

[5]
Structural stability and RNase resistance of mRNA Polyplex micelles for systemic delivery.

J Control Release. 2025-8-10

[6]
Antigenic peptide delivery to antigen-presenting cells using a CD40-coiled coil affinity-based platform.

Drug Deliv. 2025-12

[7]
Local delivery of siRNA using lipid-based nanocarriers with ROS-scavenging ability for accelerated chronic wound healing in diabetes.

Biomaterials. 2025-11

[8]
Recent Update on siRNA Therapeutics.

Int J Mol Sci. 2025-4-8

[9]
miR-484 in Hippocampal Astrocytes of Aged and Young Rats Targets CSF-1 to Regulate Neural Progenitor/Stem Cell Proliferation and Differentiation Into Neurons.

CNS Neurosci Ther. 2025-5

[10]
Landscape of small nucleic acid therapeutics: moving from the bench to the clinic as next-generation medicines.

Signal Transduct Target Ther. 2025-3-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索