Nan Lin, Mancini Andrea, Weber Thomas, Seah Geok Leng, Cortés Emiliano, Tittl Andreas, Maier Stefan A
Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maxilimians-Universität München, München, Germany.
School of Materials Science Engineering, Nanyang Technological University, Singapore, Singapore.
Nat Photonics. 2025;19(6):615-623. doi: 10.1038/s41566-025-01670-9. Epub 2025 May 16.
Quasi-bound states in the continuum (qBICs) achieved through symmetry breaking in photonic metasurfaces are a powerful approach for engineering resonances with high quality factors and tunability. However, miniaturization of these devices is limited as the in-plane unit-cell size typically scales linearly with the resonant wavelength. By contrast, polariton resonators can be deeply subwavelength, offering a promising solution for achieving compact devices. Here we demonstrate that low-loss mid-infrared surface phonon polaritons enable metasurfaces supporting qBICs with unit-cell volumes up to 10 times smaller than the free-space volume . Using 100-nm-thick free-standing silicon carbide membranes, we achieve highly confined qBIC states with exceptional robustness against incident-angle variations, a feature unique among qBIC systems. This absence of angular dispersion enables mid-infrared vibrational sensing of thin, weakly absorbing molecular layers using a reflective objective, a method that typically degrades resonance quality in standard qBIC metasurfaces. We introduce surface-phonon-polariton-based qBICs as a platform for ultraconfined nanophotonic systems, advancing the miniaturization of mid-infrared sensors and devices for thermal radiation engineering.
通过光子超表面中的对称性破缺实现的连续体中的准束缚态(qBIC)是一种用于设计具有高品质因数和可调谐性的共振的强大方法。然而,这些器件的小型化受到限制,因为面内单元尺寸通常与共振波长成线性比例。相比之下,极化激元谐振器可以是深亚波长的,为实现紧凑型器件提供了一个有前景的解决方案。在这里,我们证明了低损耗的中红外表面声子极化激元能够使超表面支持qBIC,其单元体积比自由空间体积小10倍。使用100纳米厚的独立式碳化硅膜,我们实现了高度受限的qBIC态,对入射角变化具有出色的鲁棒性,这是qBIC系统中独有的特征。这种无角色散使得能够使用反射物镜对薄的、弱吸收的分子层进行中红外振动传感,而这种方法通常会降低标准qBIC超表面中的共振质量。我们引入基于表面声子极化激元的qBIC作为超受限纳米光子系统的平台,推动用于热辐射工程的中红外传感器和器件的小型化。