Suppr超能文献

用于高度受限和超灵敏表面声子极化激元的共振纳米结构。

Resonant nanostructures for highly confined and ultra-sensitive surface phonon-polaritons.

作者信息

Dubrovkin Alexander M, Qiang Bo, Salim Teddy, Nam Donguk, Zheludev Nikolay I, Wang Qi Jie

机构信息

Centre for Disruptive Photonic Technologies, TPI, SPMS, Nanyang Technological University, Singapore, 637371, Singapore.

Centre for OptoElectronics and Biophotonics, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore.

出版信息

Nat Commun. 2020 Apr 20;11(1):1863. doi: 10.1038/s41467-020-15767-y.

Abstract

Plasmonics on metal-dielectric interfaces was widely seen as the main route for miniaturization of components and interconnect of photonic circuits. However recently, ultra-confined surface phonon-polaritonics in high-index chalcogenide films of nanometric thickness has emerged as an important alternative to plasmonics. Here, using mid-IR near-field imaging we demonstrate tunable surface phonon-polaritons in CMOS-compatible interfaces of few-nm thick germanium on silicon carbide. We show that Ge-SiC resonators with nanoscale footprint can support sheet and edge surface modes excited at the free space wavelength hundred times larger than their physical dimensions. Owing to the surface nature of the modes, the sensitivity of real-space polaritonic patterns provides pathway for local detection of the interface composition change at sub-nanometer level. Such deeply subwavelength resonators are of interest for high-density optoelectronic applications, filters, dispersion control and optical delay devices.

摘要

金属-电介质界面上的表面等离激元学曾被广泛视为光子电路组件小型化和互连的主要途径。然而,最近,纳米厚度的高折射率硫族化物薄膜中的超受限表面声子极化激元学已成为表面等离激元学的重要替代方案。在此,我们利用中红外近场成像技术,在碳化硅上几纳米厚的锗的CMOS兼容界面中展示了可调谐的表面声子极化激元。我们表明,具有纳米级尺寸的锗-碳化硅谐振器能够支持片模和边缘表面模,这些模式在自由空间波长下被激发,该波长比其物理尺寸大一百倍。由于这些模式的表面性质,实空间极化激元图案的灵敏度为亚纳米级的界面成分变化的局部检测提供了途径。这种深度亚波长谐振器对于高密度光电子应用、滤波器、色散控制和光学延迟器件具有重要意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验