Suppr超能文献

基于二维定量构效关系(2D-QSAR)和分子对接的吲哚类草本分子虚拟筛选及分子动力学模拟,用于发现治疗阿尔茨海默病的有效分子。

2D-QSAR and molecular docking based virtual screening and molecular dynamic simulation of the indole based herbal molecules for the discovery of potent molecules in the treatment of Alzheimer's disease.

作者信息

Paliwal Deepika, Mondal Ritam, Thakur Aman

机构信息

Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh India.

Adarsh Vijendra Institute of Pharmaceutical Sciences Gangoh Saharanpur, Muzaffarpur, Uttar Pradesh India.

出版信息

In Silico Pharmacol. 2025 Jun 7;13(2):81. doi: 10.1007/s40203-025-00364-y. eCollection 2025.

Abstract

UNLABELLED

Alzheimer's disease, a significant health challenge predominantly affecting the elderly, currently lacks curative treatments, with existing therapies offering only symptomatic relief. This study aimed to identify herbal indole-based molecules with therapeutic potential against Alzheimer's disease. A 2D QSAR model was developed for virtual screening, identifying five promising herbal molecules with predicted biological activity. Molecular docking studies further narrowed the candidates to three molecules-Evodiamine, Hyrtinadine A, and Lyaloside-which exhibited superior docking scores compared to the standard drug Donepezil against Crystal Structure of Recombinant Human Acetylcholinesterase (PDB Id-4ey7). Molecular dynamics simulations validated the stability of these molecules' interactions with the target receptor. These findings suggest that Evodiamine, Hyrtinadine A, and Lyaloside hold potential as leads for developing effective treatments for Alzheimer's disease. Despite the encouraging insights obtained from the molecular docking and 2D-QSAR techniques, the study is constrained by the absence of in vitro and in vivo confirmation, requiring additional experimental assessments. To determine their therapeutic potential against Alzheimer's disease, future studies should concentrate on the pharmacokinetic profiles and preclinical evaluations of the identified lead compounds.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s40203-025-00364-y.

摘要

未标记

阿尔茨海默病是一项主要影响老年人的重大健康挑战,目前缺乏治愈性治疗方法,现有疗法仅能缓解症状。本研究旨在识别具有抗阿尔茨海默病治疗潜力的基于吲哚的草药分子。开发了一个二维定量构效关系(2D QSAR)模型用于虚拟筛选,识别出五个具有预测生物活性的有前景的草药分子。分子对接研究进一步将候选分子缩小至三个——吴茱萸碱、海芒果宁A和莱雅糖苷——与标准药物多奈哌齐相比,它们针对重组人乙酰胆碱酯酶晶体结构(PDB编号-4ey7)表现出更高的对接分数。分子动力学模拟验证了这些分子与靶受体相互作用的稳定性。这些发现表明,吴茱萸碱、海芒果宁A和莱雅糖苷有望成为开发阿尔茨海默病有效治疗方法的先导物。尽管从分子对接和二维定量构效关系技术中获得了令人鼓舞的见解,但该研究受到缺乏体外和体内验证的限制,需要进行额外的实验评估。为了确定它们对阿尔茨海默病的治疗潜力,未来的研究应集中于所识别的先导化合物的药代动力学概况和临床前评估。

补充信息

在线版本包含可在10.1007/s40203-025-00364-y获取的补充材料。

相似文献

7
Donepezil for dementia due to Alzheimer's disease.多奈哌齐用于治疗阿尔茨海默病所致的痴呆。
Cochrane Database Syst Rev. 2018 Jun 18;6(6):CD001190. doi: 10.1002/14651858.CD001190.pub3.
10
Cholinesterase inhibitors for Alzheimer's disease.用于治疗阿尔茨海默病的胆碱酯酶抑制剂。
Cochrane Database Syst Rev. 2006 Jan 25;2006(1):CD005593. doi: 10.1002/14651858.CD005593.

本文引用的文献

10
Alzheimer disease.阿尔茨海默病。
Nat Rev Dis Primers. 2021 May 13;7(1):33. doi: 10.1038/s41572-021-00269-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验