Suppr超能文献

基于影像组学和临床风险因素的新型列线图预测生物制剂治疗后克罗恩病的早期黏膜愈合情况

Prediction of early mucosal healing of Crohn's disease after treatment with biologics- a novel nomogram based on radiomics and clinical risk factors.

作者信息

Huang Linlin, Li Hui, Wang Shuo, Ren Ying

机构信息

Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China.

Department of Digestive, Shengjing Hospital of China Medical University, Shenyang, China.

出版信息

Front Pharmacol. 2025 May 23;16:1586300. doi: 10.3389/fphar.2025.1586300. eCollection 2025.

Abstract

BACKGROUND

Predicting endoscopic remission is crucial for optimizing clinical treatment strategies and switching biologics in Crohn's disease (CD). Mucosal healing (MH) is a key therapeutic target. This study aimed to develop a clinically applicable prediction model for early MH in CD patients receiving biological therapy.

METHODS

This study retrospectively analyzed 120 CD patients diagnosed between 2018 and 2023, randomly divided into a training cohort and an internal validation cohort 1. Additionally, 34 prospectively enrolled CD patients diagnosed between 2024 and 2025 formed an internal validation cohort 2. Clinical indicators and conventional imaging features were evaluated to establish a clinical model. Radiomics features were extracted from computed tomography enterography (CTE) images, with regions of interest (ROIs) manually delineated to align with ulcerated intestinal segments identified through colonoscopy. A radiomics model was constructed, and a radiomics score (Rad-score) was derived. A clinical-radiomics nomogram was then developed by integrating Rad-score with clinical risk factors. Model performance was assessed using discrimination, calibration, decision curve analysis (DCA), and clinical impact curves.

RESULTS

The clinical-radiomics nomogram demonstrated strong predictive performance, with AUC values of 0.948 (95% CI: 0.902-0.995) in the training cohort, 0.925 (95% CI: 0.805-1.0) in the internal validation cohort 1, and 0.940 (95% CI: 0.802-0.993) in the internal validation cohort 2. The nomogram outperformed standalone clinical and radiomics models, with DCA confirming its clinical utility.

CONCLUSION

The developed nomogram effectively predicts early MH in CD patients undergoing biological therapy, providing a practical tool for clinicians to optimize treatment strategies and improve outcomes.

摘要

背景

预测内镜缓解对于优化克罗恩病(CD)的临床治疗策略和更换生物制剂至关重要。黏膜愈合(MH)是一个关键的治疗目标。本研究旨在为接受生物治疗的CD患者开发一种临床适用的早期MH预测模型。

方法

本研究回顾性分析了2018年至2023年间确诊的120例CD患者,随机分为训练队列和内部验证队列1。此外,2024年至2025年间前瞻性纳入的34例确诊CD患者组成内部验证队列2。评估临床指标和传统影像学特征以建立临床模型。从计算机断层扫描小肠造影(CTE)图像中提取放射组学特征,手动勾勒感兴趣区域(ROI)以与通过结肠镜检查确定的溃疡肠段对齐。构建放射组学模型,并得出放射组学评分(Rad-score)。然后通过将Rad-score与临床危险因素相结合,开发出临床-放射组学列线图。使用鉴别力、校准、决策曲线分析(DCA)和临床影响曲线评估模型性能。

结果

临床-放射组学列线图显示出强大的预测性能,训练队列中的AUC值为0.948(95%CI:0.902-0.995),内部验证队列1中的AUC值为0.925(95%CI:0.805-1.0),内部验证队列2中的AUC值为0.940(95%CI:0.802-0.993)。该列线图优于单独的临床和放射组学模型,DCA证实了其临床实用性。

结论

所开发的列线图可有效预测接受生物治疗的CD患者的早期MH,为临床医生优化治疗策略和改善治疗结果提供了一种实用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2563/12141238/a6a829bfd1d4/fphar-16-1586300-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验