文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

3E模型在糖尿病管理中的成本效益:一种评估长期经济影响的机器学习方法

Cost-effectiveness of the 3E model in diabetes management: a machine learning approach to assess long-term economic impact.

作者信息

Raghav Supriya, Kumar Santosh, Ashraf Hamid, Khanna Poonam

机构信息

Department of Public Health, School of Public Health, Poornima University, Jaipur, India.

Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N Medical College, Aligarh Muslim University, Aligarh, India.

出版信息

Front Public Health. 2025 May 23;13:1571546. doi: 10.3389/fpubh.2025.1571546. eCollection 2025.


DOI:10.3389/fpubh.2025.1571546
PMID:40487535
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12141285/
Abstract

BACKGROUND: This study investigated the cost-effectiveness and clinical impact of the 3E model (education, empowerment, and economy) in diabetes management using advanced machine learning techniques. METHODS: We conducted an observational longitudinal descriptive analysis involving 320 patients, who were grouped into intervention and control groups over a 24-month period. RESULTS: The 3E model demonstrated significant cost reductions, with the intervention group achieving a 74.3% decrease in total costs compared to 41.8% in the control group while maintaining the same level of glycemic control. Machine learning models, including random forest and K-means clustering, were used to identify key factors influencing treatment costs and to segment patient subgroups that were most responsive to the intervention. Natural language processing techniques revealed medication patterns associated with greater cost reductions. Long-term projections using ensemble methods (such as XG Boost, Exponential Smoothing, and Prophet) predicted that, on average, each year contributes approximately 20% to the total cumulative savings over 5 years. No significant correlations were observed between cost reduction and socioeconomic factors, gender, or age, suggesting the broad applicability of the 3E model. CONCLUSION: These findings demonstrate the potential of the 3E model to achieve significant reductions in diabetes management costs without compromising care quality, highlighting its value for healthcare policy and resource allocation in chronic disease management.

摘要

背景:本研究使用先进的机器学习技术,调查了3E模型(教育、赋权和经济)在糖尿病管理中的成本效益和临床影响。 方法:我们进行了一项观察性纵向描述性分析,涉及320名患者,在24个月的时间里将他们分为干预组和对照组。 结果:3E模型显示出显著的成本降低,干预组的总成本降低了74.3%,而对照组为41.8%,同时保持了相同的血糖控制水平。包括随机森林和K均值聚类在内的机器学习模型被用于识别影响治疗成本的关键因素,并对最能响应干预的患者亚组进行细分。自然语言处理技术揭示了与更大成本降低相关的用药模式。使用集成方法(如XG Boost、指数平滑和先知)进行的长期预测表明,平均而言,每年对5年累计总节省的贡献约为20%。在成本降低与社会经济因素、性别或年龄之间未观察到显著相关性,这表明3E模型具有广泛的适用性。 结论:这些发现表明,3E模型有潜力在不影响护理质量的情况下显著降低糖尿病管理成本,突出了其在慢性病管理中的医疗保健政策和资源分配价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0488/12141285/c6503918e088/fpubh-13-1571546-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0488/12141285/b3167f1d087f/fpubh-13-1571546-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0488/12141285/094c3bb11542/fpubh-13-1571546-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0488/12141285/a2ed0138acce/fpubh-13-1571546-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0488/12141285/66f518637a39/fpubh-13-1571546-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0488/12141285/41616ca2d08f/fpubh-13-1571546-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0488/12141285/667ddb321623/fpubh-13-1571546-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0488/12141285/52b495c3c266/fpubh-13-1571546-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0488/12141285/c5bbb1825ed4/fpubh-13-1571546-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0488/12141285/c156e637c487/fpubh-13-1571546-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0488/12141285/996d3406c705/fpubh-13-1571546-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0488/12141285/0d6eabc9db80/fpubh-13-1571546-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0488/12141285/7a5334f8741e/fpubh-13-1571546-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0488/12141285/41a629916b20/fpubh-13-1571546-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0488/12141285/3f11b71799ad/fpubh-13-1571546-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0488/12141285/c6503918e088/fpubh-13-1571546-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0488/12141285/b3167f1d087f/fpubh-13-1571546-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0488/12141285/094c3bb11542/fpubh-13-1571546-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0488/12141285/a2ed0138acce/fpubh-13-1571546-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0488/12141285/66f518637a39/fpubh-13-1571546-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0488/12141285/41616ca2d08f/fpubh-13-1571546-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0488/12141285/667ddb321623/fpubh-13-1571546-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0488/12141285/52b495c3c266/fpubh-13-1571546-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0488/12141285/c5bbb1825ed4/fpubh-13-1571546-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0488/12141285/c156e637c487/fpubh-13-1571546-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0488/12141285/996d3406c705/fpubh-13-1571546-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0488/12141285/0d6eabc9db80/fpubh-13-1571546-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0488/12141285/7a5334f8741e/fpubh-13-1571546-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0488/12141285/41a629916b20/fpubh-13-1571546-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0488/12141285/3f11b71799ad/fpubh-13-1571546-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0488/12141285/c6503918e088/fpubh-13-1571546-g015.jpg

相似文献

[1]
Cost-effectiveness of the 3E model in diabetes management: a machine learning approach to assess long-term economic impact.

Front Public Health. 2025-5-23

[2]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

[3]
Intravenous magnesium sulphate and sotalol for prevention of atrial fibrillation after coronary artery bypass surgery: a systematic review and economic evaluation.

Health Technol Assess. 2008-6

[4]
Clinical effectiveness, tolerability and cost-effectiveness of newer drugs for epilepsy in adults: a systematic review and economic evaluation.

Health Technol Assess. 2005-4

[5]
A systematic review and economic model of the clinical and cost-effectiveness of immunosuppressive therapy for renal transplantation in children.

Health Technol Assess. 2006-12

[6]
Adefovir dipivoxil and pegylated interferon alfa-2a for the treatment of chronic hepatitis B: a systematic review and economic evaluation.

Health Technol Assess. 2006-8

[7]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of topotecan for ovarian cancer.

Health Technol Assess. 2001

[8]
Psychological therapies for treatment-resistant depression in adults.

Cochrane Database Syst Rev. 2018-5-14

[9]
The effectiveness and cost-effectiveness of carmustine implants and temozolomide for the treatment of newly diagnosed high-grade glioma: a systematic review and economic evaluation.

Health Technol Assess. 2007-11

[10]
Mobile phone messaging for facilitating self-management of long-term illnesses.

Cochrane Database Syst Rev. 2012-12-12

本文引用的文献

[1]
Artificial Intelligence (AI) Applications in Drug Discovery and Drug Delivery: Revolutionizing Personalized Medicine.

Pharmaceutics. 2024-10-14

[2]
Natural Language Processing in medicine and ophthalmology: A review for the 21st-century clinician.

Asia Pac J Ophthalmol (Phila). 2024

[3]
A systematic review of the economic burden of diabetes mellitus: contrasting perspectives from high and low middle-income countries.

J Pharm Policy Pract. 2024-4-19

[4]
Assessing Quality of Life, Economic Burden, and Independence Across the Alzheimer's Disease Continuum Using Patient-Caregiver Dyad Surveys.

J Alzheimers Dis. 2024

[5]
Prediction and the influencing factor study of colorectal cancer hospitalization costs in China based on machine learning-random forest and support vector regression: a retrospective study.

Front Public Health. 2024

[6]
The Determination of Diabetes Utilities, Costs, and Effects Model: A Cost-Utility Tool Using Patient-Level Microsimulation to Evaluate Sensor-Based Glucose Monitoring Systems in Type 1 and Type 2 Diabetes: Comparative Validation.

Value Health. 2024-4

[7]
Healthcare Costs and Health-Related Quality of Life in Older Multimorbid Patients After Hospitalization.

Health Serv Insights. 2023-2-5

[8]
Effectiveness of empowerment-based intervention on HbA1c and self-efficacy among cases with type 2 diabetes mellitus: A meta-analysis of randomized controlled trials.

Medicine (Baltimore). 2021-9-24

[9]
Random forest approach for determining risk prediction and predictive factors of type 2 diabetes: large-scale health check-up data in Japan.

BMJ Nutr Prev Health. 2021-3-11

[10]
Artificial intelligence in healthcare: transforming the practice of medicine.

Future Healthc J. 2021-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索