Suppr超能文献

机器人时代的人群招募策略:来自“你的盘中餐”研究的见解

Population Recruitment Strategies in the Age of Bots: Insights from the What Is on Your Plate Study.

作者信息

Elenio Emily G, Tovar Alison, San Soucie John, Vadiveloo Maya K

机构信息

Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, United States.

Applied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States.

出版信息

Curr Dev Nutr. 2025 Apr 15;9(5):107442. doi: 10.1016/j.cdnut.2025.107442. eCollection 2025 May.

Abstract

BACKGROUND

To evaluate state-wide nutrition policies, valid tools are required to gather sufficient sample sizes. Remote data collection, including web-based dietary assessments, offers convenience for participants and researchers and enables faster and more diverse recruitment. However, it presents challenges, including risk of bots compromising data integrity.

OBJECTIVES

This study describes the technical survey design of an ongoing longitudinal study, which is evaluating a state-wide Supplemental Nutrition Assistance Program (SNAP) incentive program, discusses strategies to prevent and identify bots, duplicates, fraudulent entries, and implausible data, and provides recommendations to improve future public health nutrition research.

METHODS

From May to September 2023, SNAP participants from Rhode Island and Connecticut were recruited to complete an online food frequency questionnaire (FFQ) and a demographic survey. Given the large sample and online format, our interdisciplinary team designed the technical backend to optimize participants' convenience while ensuring data quality through an automated system that assessed FFQ responses. To prevent bots and duplicates, we created duplicate application programming interfaces (API), randomly called participants, and evaluated Completely Automated Public Turing Test to Tell Computers and Humans Apart (reCAPTCHA), geotags, and Internet Protocol (IP) addresses.

RESULTS

Using a combination of text blasts and in-person recruitment, we enrolled 1367 participants, with text blasts proving the most effective strategy (∼60% of participants). Midway through recruitment, we identified 544 potential bots that completed the screener, with duplicate IP addresses and geotags from outside the recruitment area serving as strong indicators of bot activity. At baseline, 112 participants failed FFQ data quality checks, prompting follow-up by research assistants. Our automated duplicate and FFQ APIs saved countless hours of staff time.

CONCLUSIONS

Remote data collection tools were critical for meeting recruitment goals and ensuring our data authenticity. A combination of strategies is necessary to effectively mitigate against bots and ensure plausible responses. Widely available, built-in tools (e.g., reCAPTCHA) are helpful but are insufficient alone. Customized solutions like our automated systems may be critical for future researchers to maintain data integrity.

摘要

背景

为了评估全州范围的营养政策,需要有效的工具来收集足够的样本量。远程数据收集,包括基于网络的饮食评估,为参与者和研究人员提供了便利,并能实现更快、更多样化的招募。然而,它也带来了挑战,包括机器人程序危及数据完整性的风险。

目的

本研究描述了一项正在进行的纵向研究的技术调查设计,该研究正在评估一项全州范围的补充营养援助计划(SNAP)激励计划,讨论预防和识别机器人程序、重复数据、欺诈性条目和不合理数据的策略,并为改进未来的公共卫生营养研究提供建议。

方法

2023年5月至9月,招募了罗德岛州和康涅狄格州的SNAP参与者,以完成一份在线食物频率问卷(FFQ)和一份人口统计学调查。鉴于样本量大且采用在线形式,我们的跨学科团队设计了技术后端,以优化参与者的便利性,同时通过一个评估FFQ回答的自动化系统确保数据质量。为了防止机器人程序和重复数据,我们创建了重复应用程序编程接口(API),随机致电参与者,并评估了全自动区分计算机和人类的图灵测试(reCAPTCHA)、地理标签和互联网协议(IP)地址。

结果

通过短信群发和面对面招募相结合的方式,我们招募了1367名参与者,其中短信群发被证明是最有效的策略(约60%的参与者)。在招募过程中,我们识别出544个完成筛选器的潜在机器人程序,重复的IP地址和来自招募区域以外的地理标签是机器人程序活动的有力指标。在基线时,112名参与者的FFQ数据质量检查未通过,促使研究助理进行跟进。我们的自动化重复和FFQ API节省了工作人员无数的时间。

结论

远程数据收集工具对于实现招募目标和确保数据真实性至关重要。需要结合多种策略来有效抵御机器人程序并确保合理的回答。广泛可用的内置工具(如reCAPTCHA)很有帮助,但单独使用并不够。像我们的自动化系统这样的定制解决方案可能对未来的研究人员维护数据完整性至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9045/12143651/34aa6f5b6482/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验