Xu Tianyue, Zheng Dan, Chen Meixu, Song Linlin, Liu Zhihui, Cheng Yan, Zhao Yujie, Huang Liwen, Li Yixuan, Yang Zhankun, Li Cong, Dong Biao, Jing Jing, Shi Hubing
Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China.
Cancer Center, Breast Center, West China Hospital, Sichuan University, Chengdu 610041, China.
Acta Pharm Sin B. 2025 May;15(5):2703-2722. doi: 10.1016/j.apsb.2025.03.020. Epub 2025 Mar 17.
Lacking therapeutic targets highlights the crucial roles of chemotherapy and radiotherapy in the clinical management of triple-negative breast cancer (TNBC). To relieve the side effects of the chemoradiotherapy combination regimen, we design and develop a self-assembled micelle nanosystem consisting of perfluorocarbon chain-modified cisplatin prodrug. By incorporating perfluorodecalin, this nanosystem can effectively carry ozone and promote irradiation-derived reactive oxygen species (ROS) production. By leveraging the perfluorocarbon sidechain, the nanosystem exhibits efficient internalization by TNBC cells and effectively escapes from lysosomal entrapment. Under X-ray irradiation, ozone-generated ROS disrupts the intracellular redox balance, thereby facilitating the release of cisplatin in a reduction-responsive manner mediated by reduced glutathione. Moreover, oxygen derived from ozone decomposition enhances the efficacy of radiotherapy by alleviating tumor hypoxia. Notably, the combination of irradiation with ozone-loaded cisplatin prodrug nano system synergistically prompts antitumor efficacy and reduces cellular/systemic toxicity and . Furthermore, the combo regimen remodels the tumor microenvironment into an immune-favored state by triggering immunogenic cell death and relieving hypoxia, which provides a promising foundation for a combination regimen of immunotherapy. In conclusion, our nanosystem presents a novel strategy for integrating chemotherapy and radiotherapy to optimize the efficacy and safety of TNBC clinical treatment.
缺乏治疗靶点凸显了化疗和放疗在三阴性乳腺癌(TNBC)临床管理中的关键作用。为了减轻放化疗联合方案的副作用,我们设计并开发了一种由全氟碳链修饰的顺铂前药组成的自组装胶束纳米系统。通过引入全氟萘烷,该纳米系统能够有效携带臭氧并促进辐射诱导的活性氧(ROS)生成。借助全氟碳侧链,该纳米系统在TNBC细胞中表现出高效内化,并能有效逃离溶酶体的包裹。在X射线照射下,臭氧产生的ROS破坏细胞内的氧化还原平衡,从而以由谷胱甘肽还原介导的还原反应方式促进顺铂的释放。此外,臭氧分解产生的氧气通过缓解肿瘤缺氧增强放疗效果。值得注意的是,照射与负载臭氧的顺铂前药纳米系统的组合协同提高抗肿瘤疗效并降低细胞/全身毒性。此外,联合方案通过引发免疫原性细胞死亡和缓解缺氧将肿瘤微环境重塑为免疫有利状态,这为免疫治疗联合方案提供了有前景的基础。总之,我们的纳米系统提出了一种整合化疗和放疗以优化TNBC临床治疗疗效和安全性的新策略。