Suppr超能文献

使用机器学习算法预测创伤性胸部损伤的存在

Predicting the Presence of Traumatic Chest Injuries Using Machine Learning Algorithm.

作者信息

Vazirizadeh-Mahabadi Mohammadhossein, Ghaffari Jolfayi Amir, Hosseini Mostafa, Yarahmadi Mobina, Zarei Hamed, Masoodi Mohsen, Sarveazad Arash, Yousefifard Mahmoud

机构信息

Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.

Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.

出版信息

Arch Acad Emerg Med. 2025 Mar 17;13(1):e41. doi: 10.22037/aaemj.v13i1.2512. eCollection 2025.

Abstract

INTRODUCTION

Various tools have been developed to determine the priority of radiography in trauma patients. This study aimed to investigate the role of machine learning models in predicting chest injuries following multiple trauma.

METHODS

We used the database of a comprehensive cross-sectional survey conducted in 2015. Eight machine learning models were developed using demographic characteristics, physical exam findings, and radiologic results of 2860 patients.

RESULTS

Area under the receiver operating characteristic curve (AUC) was greater than 0.96 in Random Forest, Gradient Boosting, XGBoost, Decision Tree, Support Vector Machine (SVM), Logistic Regression, K-Nearest Neighbors (KNN), and Neural Network models. The random forest model, XGBoost and Gradient Boosting had the highest accuracy (0.99). Sensitivity was also highest in the Gradient Boosting, XGBoost and KNN models (0.99). The specificity of all of the models in predicting chest radiography outcomes of multiple trauma patients was higher than 0.97, except for logistic regression and SVM (0.912 and 0.885 respectively).

CONCLUSIONS

Our study highlights the strong potential of machine learning models, especially Random Forest and Gradient Boosting, in predicting chest trauma outcomes with high accuracy and sensitivity.

摘要

引言

已开发出各种工具来确定创伤患者进行放射检查的优先级。本研究旨在探讨机器学习模型在预测多发伤后胸部损伤中的作用。

方法

我们使用了2015年进行的一项全面横断面调查的数据库。利用2860例患者的人口统计学特征、体格检查结果和放射学结果开发了8种机器学习模型。

结果

随机森林、梯度提升、XGBoost、决策树、支持向量机(SVM)、逻辑回归、K近邻(KNN)和神经网络模型的受试者工作特征曲线下面积(AUC)大于0.96。随机森林模型、XGBoost和梯度提升的准确率最高(0.99)。梯度提升、XGBoost和KNN模型的灵敏度也最高(0.99)。除逻辑回归和支持向量机(分别为0.912和0.885)外,所有模型在预测多发伤患者胸部X线检查结果方面的特异性均高于0.97。

结论

我们的研究突出了机器学习模型,尤其是随机森林和梯度提升,在高精度和高灵敏度预测胸部创伤结果方面的强大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb69/12145125/c37f412ed383/aaem-13-e41-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验