文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

结直肠癌深度学习的研究现状与趋势(2011 - 2023):文献计量分析与可视化

Research status and trends of deep learning in colorectal cancer (2011-2023): Bibliometric analysis and visualization.

作者信息

Qi Lu-Ying, Li Bai-Wang, Chen Jie-Qiong, Bian Hu-Po, Xue Jing-Nan, Zhao Hong-Xing

机构信息

Department of Radiology, The First Affiliated Hospital of Huzhou University, Huzhou 313000, Zhejiang Province, China.

Center of Gastrointestinal Endoscopy, The Fourth People's Hospital of Jinan, Jinan 250031, Shandong Province, China.

出版信息

World J Gastrointest Oncol. 2025 May 15;17(5):103667. doi: 10.4251/wjgo.v17.i5.103667.


DOI:10.4251/wjgo.v17.i5.103667
PMID:40487952
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12142239/
Abstract

BACKGROUND: Colorectal cancer (CRC) is the third-most prevalent cancer and the cancer with the second-highest mortality rate worldwide, representing a high public health burden. Deep learning (DL) offers advantages in the diagnosis, identification, localization, classification and prognosis of CRC patients. However, few bibliometric analyses of research hotspots and trends in the field have been performed. AIM: To use bibliometric approaches to analyze and visualize the current research state and development trend of DL in CRC as well as to anticipate future research directions and hotspots. METHODS: Datasets were retrieved from the Web of Science Core Collection for the period January 2011 to December 2023. Scimago Graphica (1.0.45), VOSviewer (1.6.20) and CiteSpace (6.3.1) were used to analyze and visualize the nation, institution, journal, author, reference and keyword indicators. Origin (2022) was utilized for plotting, and Excel (2021) was used to construct the tables. RESULTS: A total of 1275 publications in 538 journals from 74 countries and 2267 institutions were collected. The number of annual publications has increased over time. China (371, 29.1%), the United States (265, 20.8%) and Japan (155, 12.2%) contributed significantly to the number of articles published, accounting for 62.1% of the total publications. The United States had the strongest ties to other nations. Sun Yat-sen University in China had the highest number of publications (32). The journal with the most publications was (34, Q2), whereas had the most co-citations (1053, Q1). Kather JN, was the author with the most articles (12) and co-citations (287). The most frequently cited reference was . Keywords were divided into six clusters, with "colorectal cancer" (12.34) having the highest outbreak intensity. CONCLUSION: This study highlights the current status and most active directions of the use of DL in CRC. This approach has important applications in the identification, diagnosis, localization, classification and prognosis of the disease and will remain a central focus in the future.

摘要

背景:结直肠癌(CRC)是全球第三大常见癌症,也是死亡率第二高的癌症,给公共卫生带来了沉重负担。深度学习(DL)在CRC患者的诊断、识别、定位、分类和预后方面具有优势。然而,该领域关于研究热点和趋势的文献计量分析较少。 目的:运用文献计量学方法分析和可视化DL在CRC领域的当前研究状况和发展趋势,并预测未来的研究方向和热点。 方法:从科学网核心合集检索2011年1月至2023年12月期间的数据集。使用Scimago Graphica(1.0.45)、VOSviewer(1.6.20)和CiteSpace(6.3.1)分析和可视化国家、机构、期刊、作者、参考文献和关键词指标。利用Origin(2022)进行绘图,使用Excel(2021)构建表格。 结果:共收集了来自74个国家和2267个机构的538种期刊上的1275篇出版物。年出版物数量随时间增加。中国(371篇,29.1%)、美国(265篇,20.8%)和日本(155篇,12.2%)对发表文章数量贡献显著,占总出版物的62.1%。美国与其他国家联系最为紧密。中国中山大学发表的文章数量最多(32篇)。发表文章最多的期刊是《 》(34篇,Q2分区),而《 》的共被引次数最多(1053次,Q1分区)。Kather JN是发表文章最多(12篇)且共被引次数最多(287次)的作者。被引用最频繁的参考文献是《 》。关键词分为六个聚类,“结直肠癌”(爆发强度为12.34)的爆发强度最高。 结论:本研究突出了DL在CRC领域的当前应用状况和最活跃的研究方向。该方法在疾病的识别、诊断、定位、分类和预后方面具有重要应用,并且在未来仍将是核心研究重点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2440/12142239/d322dbb04095/103667-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2440/12142239/010a9d336dc7/103667-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2440/12142239/5368b58db646/103667-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2440/12142239/0fb7093a9b81/103667-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2440/12142239/899555ed1ecc/103667-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2440/12142239/636344aa82cb/103667-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2440/12142239/b9cb99884e28/103667-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2440/12142239/d8d5450eb4a6/103667-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2440/12142239/d322dbb04095/103667-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2440/12142239/010a9d336dc7/103667-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2440/12142239/5368b58db646/103667-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2440/12142239/0fb7093a9b81/103667-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2440/12142239/899555ed1ecc/103667-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2440/12142239/636344aa82cb/103667-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2440/12142239/b9cb99884e28/103667-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2440/12142239/d8d5450eb4a6/103667-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2440/12142239/d322dbb04095/103667-g008.jpg

相似文献

[1]
Research status and trends of deep learning in colorectal cancer (2011-2023): Bibliometric analysis and visualization.

World J Gastrointest Oncol. 2025-5-15

[2]
Research Trends in the Application of Artificial Intelligence in Oncology: A Bibliometric and Network Visualization Study.

Front Biosci (Landmark Ed). 2022-8-31

[3]
Application of artificial intelligence in Alzheimer's disease: a bibliometric analysis.

Front Neurosci. 2025-2-14

[4]
Research trends on the relationship between gut microbiota and colorectal cancer: A bibliometric analysis.

Front Cell Infect Microbiol. 2022

[5]
The global research of artificial intelligence in lung cancer: a 20-year bibliometric analysis.

Front Oncol. 2024-2-2

[6]
Research hotspots and frontiers of machine learning in renal medicine: a bibliometric and visual analysis from 2013 to 2024.

Int Urol Nephrol. 2025-3

[7]
Visualizing knowledge evolution trends and research hotspots of artificial intelligence in colorectal cancer: A bibliometric analysis.

Front Oncol. 2022-11-28

[8]
Research landscape of radiotherapy for nasopharyngeal carcinoma from 1959 to 2022: A bibliometric analysis.

Heliyon. 2024-9-26

[9]
The applications of anterior segment optical coherence tomography in glaucoma: a 20-year bibliometric analysis.

PeerJ. 2024-11-28

[10]
The published role of artificial intelligence in drug discovery and development: a bibliometric and social network analysis from 1990 to 2023.

J Cheminform. 2025-5-8

本文引用的文献

[1]
Deep learning application in prediction of cancer molecular alterations based on pathological images: a bibliographic analysis via CiteSpace.

J Cancer Res Clin Oncol. 2024-10-18

[2]
Bibliometric analysis and visualisation of research hotspots and frontiers on omics in osteosarcoma.

J Cancer Res Clin Oncol. 2024-8-22

[3]
Research status and hotspots of tight junctions and colorectal cancer: A bibliometric and visualization analysis.

World J Gastrointest Oncol. 2024-8-15

[4]
[Interpretation on the report of global cancer statistics 2022].

Zhonghua Zhong Liu Za Zhi. 2024-7-23

[5]
Deep learning for colorectal cancer detection in contrast-enhanced CT without bowel preparation: a retrospective, multicentre study.

EBioMedicine. 2024-6

[6]
Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.

CA Cancer J Clin. 2024

[7]
End-to-end prognostication in colorectal cancer by deep learning: a retrospective, multicentre study.

Lancet Digit Health. 2024-1

[8]
The role of deep learning in diagnosing colorectal cancer.

Prz Gastroenterol. 2023

[9]
A Contrast-Enhanced CT-Based Deep Learning System for Preoperative Prediction of Colorectal Cancer Staging and RAS Mutation.

Cancers (Basel). 2023-9-10

[10]
Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study.

Cancer Cell. 2023-9-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索