文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

无肠道准备对比增强 CT 检测结直肠癌的深度学习:一项回顾性、多中心研究。

Deep learning for colorectal cancer detection in contrast-enhanced CT without bowel preparation: a retrospective, multicentre study.

机构信息

Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; School of Medicine, South China University of Technology, Guangzhou, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China.

Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China; School of Medicine, South Medical University, Guangzhou, China.

出版信息

EBioMedicine. 2024 Jun;104:105183. doi: 10.1016/j.ebiom.2024.105183. Epub 2024 Jun 6.


DOI:10.1016/j.ebiom.2024.105183
PMID:38848616
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11192791/
Abstract

BACKGROUND: Contrast-enhanced CT scans provide a means to detect unsuspected colorectal cancer. However, colorectal cancers in contrast-enhanced CT without bowel preparation may elude detection by radiologists. We aimed to develop a deep learning (DL) model for accurate detection of colorectal cancer, and evaluate whether it could improve the detection performance of radiologists. METHODS: We developed a DL model using a manually annotated dataset (1196 cancer vs 1034 normal). The DL model was tested using an internal test set (98 vs 115), two external test sets (202 vs 265 in 1, and 252 vs 481 in 2), and a real-world test set (53 vs 1524). We compared the detection performance of the DL model with radiologists, and evaluated its capacity to enhance radiologists' detection performance. FINDINGS: In the four test sets, the DL model had the area under the receiver operating characteristic curves (AUCs) ranging between 0.957 and 0.994. In both the internal test set and external test set 1, the DL model yielded higher accuracy than that of radiologists (97.2% vs 86.0%, p < 0.0001; 94.9% vs 85.3%, p < 0.0001), and significantly improved the accuracy of radiologists (93.4% vs 86.0%, p < 0.0001; 93.6% vs 85.3%, p < 0.0001). In the real-world test set, the DL model delivered sensitivity comparable to that of radiologists who had been informed about clinical indications for most cancer cases (94.3% vs 96.2%, p > 0.99), and it detected 2 cases that had been missed by radiologists. INTERPRETATION: The developed DL model can accurately detect colorectal cancer and improve radiologists' detection performance, showing its potential as an effective computer-aided detection tool. FUNDING: This study was supported by National Science Fund for Distinguished Young Scholars of China (No. 81925023); Regional Innovation and Development Joint Fund of National Natural Science Foundation of China (No. U22A20345); National Natural Science Foundation of China (No. 82072090 and No. 82371954); Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application (No. 2022B1212010011); High-level Hospital Construction Project (No. DFJHBF202105).

摘要

背景:增强 CT 扫描提供了一种检测未被怀疑的结直肠癌的手段。然而,在未进行肠道准备的增强 CT 中,结直肠癌可能会被放射科医生漏诊。我们旨在开发一种用于准确检测结直肠癌的深度学习(DL)模型,并评估其是否能提高放射科医生的检测性能。

方法:我们使用手动标注数据集(1196 例癌症与 1034 例正常)开发了一种 DL 模型。该 DL 模型使用内部测试集(98 例与 115 例)、两个外部测试集(1 中 202 例与 265 例,2 中 252 例与 481 例)和一个真实世界测试集(53 例与 1524 例)进行了测试。我们比较了 DL 模型与放射科医生的检测性能,并评估了其增强放射科医生检测性能的能力。

结果:在四个测试集中,DL 模型的受试者工作特征曲线下面积(AUCs)范围在 0.957 到 0.994 之间。在内部测试集和外部测试集 1 中,DL 模型的准确性均高于放射科医生(97.2%比 86.0%,p<0.0001;94.9%比 85.3%,p<0.0001),并且显著提高了放射科医生的准确性(93.4%比 86.0%,p<0.0001;93.6%比 85.3%,p<0.0001)。在真实世界的测试集中,DL 模型的敏感性与告知了大多数癌症病例临床指征的放射科医生相当(94.3%比 96.2%,p>0.99),并且它检测到了 2 例被放射科医生漏诊的病例。

解释:所开发的 DL 模型可以准确地检测结直肠癌,并提高放射科医生的检测性能,显示出作为一种有效的计算机辅助检测工具的潜力。

资金:本研究得到了国家杰出青年科学基金(No. 81925023);国家自然科学基金联合基金(No. U22A20345);国家自然科学基金(No. 82072090 和 No. 82371954);广东省人工智能医学影像分析与应用重点实验室(No. 2022B1212010011);高水平医院建设项目(No. DFJHBF202105)的支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8213/11192791/0f9fb22269b5/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8213/11192791/6d764a3a68ef/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8213/11192791/0f9fb22269b5/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8213/11192791/6d764a3a68ef/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8213/11192791/0f9fb22269b5/gr2.jpg

相似文献

[1]
Deep learning for colorectal cancer detection in contrast-enhanced CT without bowel preparation: a retrospective, multicentre study.

EBioMedicine. 2024-6

[2]
Development and multicenter validation of deep convolutional neural network-based detection of colorectal cancer on abdominal CT.

Eur Radiol. 2024-9

[3]
Development of an AI system for accurately diagnose hepatocellular carcinoma from computed tomography imaging data.

Br J Cancer. 2021-10

[4]
Deep learning to distinguish pancreatic cancer tissue from non-cancerous pancreatic tissue: a retrospective study with cross-racial external validation.

Lancet Digit Health. 2020-6

[5]
A transformer-based deep learning model for early prediction of lymph node metastasis in locally advanced gastric cancer after neoadjuvant chemotherapy using pretreatment CT images.

EClinicalMedicine. 2024-8-30

[6]
Deep Learning Assessment of Small Renal Masses at Contrast-enhanced Multiphase CT.

Radiology. 2024-5

[7]
Deep learning-based artificial intelligence model to assist thyroid nodule diagnosis and management: a multicentre diagnostic study.

Lancet Digit Health. 2021-4

[8]
Effect of a comprehensive deep-learning model on the accuracy of chest x-ray interpretation by radiologists: a retrospective, multireader multicase study.

Lancet Digit Health. 2021-8

[9]
Deep learning-enabled pelvic ultrasound images for accurate diagnosis of ovarian cancer in China: a retrospective, multicentre, diagnostic study.

Lancet Digit Health. 2022-3

[10]
Artificial intelligence-based prediction of cervical lymph node metastasis in papillary thyroid cancer with CT.

Eur Radiol. 2023-10

引用本文的文献

[1]
Personalized surveillance in colorectal cancer: Integrating circulating tumor DNA and artificial intelligence into post-treatment follow-up.

World J Gastroenterol. 2025-5-14

[2]
Research status and trends of deep learning in colorectal cancer (2011-2023): Bibliometric analysis and visualization.

World J Gastrointest Oncol. 2025-5-15

[3]
Prediction of KRAS gene mutations in colorectal cancer using a CT-based radiomic model.

Front Med (Lausanne). 2025-5-12

[4]
Annotation-free artificial intelligence for abdominal computed tomography anomaly detection.

EBioMedicine. 2025-1

[5]
Artificial Intelligence in Coloproctology: A Review of Emerging Technologies and Clinical Applications.

J Clin Med. 2024-9-30

本文引用的文献

[1]
Colorectal Cancer Screening - Approach, Evidence, and Future Directions.

NEJM Evid. 2022-1

[2]
Strategies for improving colorectal cancer detection with routine computed tomography.

Abdom Radiol (NY). 2023-6

[3]
Cancer statistics, 2023.

CA Cancer J Clin. 2023-1

[4]
Value-added Opportunistic CT Screening: State of the Art.

Radiology. 2022-5

[5]
Deep learning-enabled pelvic ultrasound images for accurate diagnosis of ovarian cancer in China: a retrospective, multicentre, diagnostic study.

Lancet Digit Health. 2022-3

[6]
AI in health and medicine.

Nat Med. 2022-1

[7]
Screening for Colorectal Cancer: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force.

JAMA. 2021-5-18

[8]
Multi-task learning for segmentation and classification of tumors in 3D automated breast ultrasound images.

Med Image Anal. 2021-5

[9]
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.

CA Cancer J Clin. 2021-5

[10]
MDCC-Net: Multiscale double-channel convolution U-Net framework for colorectal tumor segmentation.

Comput Biol Med. 2021-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索