文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于涂覆有分子印迹聚合物的磁铁矿的有机-无机磁性纳米颗粒用于药物递送系统。

Organic-Inorganic Magnetic Nanoparticles Based on Magnetite Coated with Molecularly Imprinted Polymers for Drug Delivery Systems.

作者信息

Ramírez-Rave Sandra, Antonio Gutiérrez Leticia, Rojas-Montoya Iván D, Bernad-Bernad Ma Josefa, Gracia-Mora Jesús

机构信息

Departamento de Química Inorgánica, Facultad de Química, UNAM, Avenida Universidad 3000, 04510 Ciudad de México, México.

Departamento de Farmacia, Facultad de Química, UNAM, Avenida Universidad 3000, 04510 Ciudad de México, México.

出版信息

ACS Omega. 2025 May 19;10(21):21105-21119. doi: 10.1021/acsomega.4c09515. eCollection 2025 Jun 3.


DOI:10.1021/acsomega.4c09515
PMID:40488049
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12138690/
Abstract

New magnetic organic/inorganic hybrid nanoparticles were prepared by coating the magnetite surface with molecularly imprinted polymers of different monomers (methacrylic acid, itaconic acid, 1-vinylimidazole, 4-vinylpyridine). Magnetite was synthesized by coprecipitation, and polymeric coatings were induced by thermal heating and magnetic hyperthermia. The resultant nanocomposites were tested as Drug Delivery Systems (DDS) of 6-mercaptopurine (6-MP), displaying an interesting behavior depending on (a) the synthesis method used for their preparation and (b) the conditions employed for the release test. DDS based on methacrylic acid displayed the best performance in the release of 6-MP in all cases, but the rationalization of a magnetite MIP (molecularly imprinted polymer) system of this monomer enhanced the release yield by approximately 50% compared with the nonimprinted system (NIP) prepared with the same monomer. New MNP obtained are able to behave as DDS under magnetic hyperthermia with a moderate performance in contrast to the release in the absence of magnetic field.

摘要

通过用不同单体(甲基丙烯酸、衣康酸、1-乙烯基咪唑、4-乙烯基吡啶)的分子印迹聚合物包覆磁铁矿表面,制备了新型磁性有机/无机杂化纳米粒子。通过共沉淀法合成磁铁矿,并通过热加热和磁热疗诱导聚合物涂层。所得纳米复合材料作为6-巯基嘌呤(6-MP)的药物递送系统(DDS)进行了测试,其表现出有趣的行为,这取决于(a)用于制备它们的合成方法和(b)用于释放测试的条件。基于甲基丙烯酸的DDS在所有情况下6-MP的释放中表现最佳,但与用相同单体制备的非印迹系统(NIP)相比,这种单体的磁铁矿分子印迹聚合物(MIP)系统的合理化使释放产率提高了约50%。与在无磁场下的释放相比,新获得的MNP在磁热疗下能够作为DDS表现出中等性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/43bab9f620f9/ao4c09515_0018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/370b6b63216d/ao4c09515_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/646213bdbba0/ao4c09515_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/3d1987229fd4/ao4c09515_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/8d4efa93d1a1/ao4c09515_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/cbf97ff9dadb/ao4c09515_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/52f91ad778d9/ao4c09515_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/2f7de85824df/ao4c09515_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/3a8aee7d3821/ao4c09515_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/d287b4196694/ao4c09515_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/07b3fc7ae19f/ao4c09515_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/fd15359a2262/ao4c09515_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/af138953c2e2/ao4c09515_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/860631280037/ao4c09515_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/ca765902cff2/ao4c09515_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/c4c725a486b5/ao4c09515_0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/9f1ed07fc830/ao4c09515_0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/20ffc02f76c4/ao4c09515_0017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/43bab9f620f9/ao4c09515_0018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/370b6b63216d/ao4c09515_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/646213bdbba0/ao4c09515_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/3d1987229fd4/ao4c09515_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/8d4efa93d1a1/ao4c09515_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/cbf97ff9dadb/ao4c09515_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/52f91ad778d9/ao4c09515_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/2f7de85824df/ao4c09515_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/3a8aee7d3821/ao4c09515_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/d287b4196694/ao4c09515_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/07b3fc7ae19f/ao4c09515_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/fd15359a2262/ao4c09515_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/af138953c2e2/ao4c09515_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/860631280037/ao4c09515_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/ca765902cff2/ao4c09515_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/c4c725a486b5/ao4c09515_0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/9f1ed07fc830/ao4c09515_0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/20ffc02f76c4/ao4c09515_0017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a3/12138690/43bab9f620f9/ao4c09515_0018.jpg

相似文献

[1]
Organic-Inorganic Magnetic Nanoparticles Based on Magnetite Coated with Molecularly Imprinted Polymers for Drug Delivery Systems.

ACS Omega. 2025-5-19

[2]
[Preparation of molecularly imprinted polymers-functionalized silica nanoparticles for the separation and recognition of aristolochic acids].

Se Pu. 2021-10

[3]
Floating liquid crystalline molecularly imprinted polymer coated carbon nanotubes for levofloxacin delivery.

Eur J Pharm Biopharm. 2018-2-10

[4]
Novel biodegradable molecularly imprinted polymer nanoparticles for drug delivery of methotrexate anti-cancer; synthesis, characterization and cellular studies.

Daru. 2022-12

[5]
Magnetic MIPs: Synthesis and Applications.

Methods Mol Biol. 2021

[6]
Novel oligo(ethylene glycol)-based molecularly imprinted magnetic nanoparticles for thermally modulated capture and release of lysozyme.

ACS Appl Mater Interfaces. 2014-10-8

[7]
Development of a selective and sensitive voltammetric sensor for propylparaben based on a nanosized molecularly imprinted polymer-carbon paste electrode.

Mater Sci Eng C Mater Biol Appl. 2013-11-27

[8]
Extraction-assisted voltammetric determination of homocysteine using magnetic nanoparticles modified with molecularly imprinted polymer.

Mikrochim Acta. 2023-3-27

[9]
Preparation of carbon nanotubes and polyhedral oligomeric-reinforced molecularly imprinted polymer composites for drug delivery of gallic acid.

Int J Pharm. 2022-3-5

[10]
TiO2-based Mitoxantrone Imprinted Poly (Methacrylic acid-co-polycaprolctone diacrylate) Nanoparticles as a Drug Delivery System.

Curr Pharm Des. 2017

本文引用的文献

[1]
A Review on the Adsorption Isotherms and Design Calculations for the Optimization of Adsorbent Mass and Contact Time.

ACS Omega. 2023-4-24

[2]
Magnetic cryogels as a shape-selective and customizable platform for hyperthermia-mediated drug delivery.

Sci Rep. 2022-6-10

[3]
Synthesis of Magnetite Nanorods from the Reduction of Iron Oxy-Hydroxide with Hydrazine.

ACS Omega. 2020-8-27

[4]
Developments of Smart Drug-Delivery Systems Based on Magnetic Molecularly Imprinted Polymers for Targeted Cancer Therapy: A Short Review.

Pharmaceutics. 2020-8-31

[5]
Magnetic molecularly imprinted polymers (MMIPs) for carbazole derivative release in targeted cancer therapy.

J Mater Chem B. 2014-10-14

[6]
Anticancer loading and controlled release of novel water-compatible magnetic nanomaterials as drug delivery agents, coupled to a computational modeling approach.

J Mater Chem B. 2013-9-7

[7]
Preparation of Ethylene Glycol Dimethacrylate (EGDMA)-Based Terpolymer as Potential Sorbents for Pharmaceuticals Adsorption.

Polymers (Basel). 2020-2-12

[8]
Increasing the anticancer activity of azidothymidine toward the breast cancer via rational design of magnetic drug carrier based on molecular imprinting technology.

Mater Sci Eng C Mater Biol Appl. 2019-5-21

[9]
Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics.

Expert Opin Drug Deliv. 2018-12-9

[10]
Magnetic Nanoparticles Create Hot Spots in Polymer Matrix for Controlled Drug Release.

Nanomaterials (Basel). 2018-10-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索