Merdoud Ryma, Aoudjit Farid, Mouni Lotfi, Honavar Vaishnavi, Moghadam Roja Parvizi, Palabathuni Manoj, Ranade Vivek V
Laboratoire Matériaux et Développement Durable, Faculté des Sciences et Sciences Appliqués, Université de Bouira, Bouira 10000, Algeria.
Department of Chemical Sciences and Bernal Institute, University of Limerick, Ireland V94 T9PX, Ireland.
ACS Omega. 2025 May 19;10(21):21377-21390. doi: 10.1021/acsomega.5c00034. eCollection 2025 Jun 3.
This study investigates the photocatalytic degradation of Methyl Orange (MO) using doped photocatalysts, specifically Ag-TiO synthesized via a novel solid-state method, with varying silver concentrations (0%, 0.5%, 1%, 1.5%, and 2.5% w/w relative to TiO) under different UV light intensities (60 and 200 W). The photocatalysts were characterized using XRD, SEM-EDS, and BET. The optimal performance was observed with a 0.5% Ag-TiO concentration, achieving a degradation efficiency of 59% under 200 W UV light over 180 min of treatment. The effect of photocatalyst loading was then optimized, followed by an investigation of the synergistic effects of photocatalysis (PC) coupled with hydrogen peroxide (HO). The highest degradation efficiency of 94% was achieved at 0.01% v/v HO with a synergistic coefficient of 24, within 60 min. Further enhancement was observed when combining PC, HO, and hydrodynamic cavitation (HC), achieving complete degradation of MO in just 3 min (1.5 passes) with a high synergistic coefficient of 42. The degradation process was represented as pseudo-first-order kinetics for PC alone and combined with HO, and a per-pass degradation model for HC. The impact of various scavengers on the photocatalytic process was examined, highlighting the crucial roles of hydroxyl radicals (•OH) and photogenerated holes (h) in the degradation mechanism. The influence of anions and the water matrix on the reactive oxygen species (ROS) generation and efficiency, as well as the environmental fate of Ag-TiO catalysts, is also discussed. This research underscores the importance of optimizing doped photocatalyst composition and operational conditions to maximize pollutant degradation efficiency, demonstrating significant advancements in advanced oxidation processes through synergy.
本研究考察了使用掺杂光催化剂光催化降解甲基橙(MO)的情况,具体而言,是通过一种新型固态法合成的Ag-TiO,其中银浓度(相对于TiO为0%、0.5%、1%、1.5%和2.5% w/w)不同,且处于不同紫外光强度(60和200 W)下。使用X射线衍射(XRD)、扫描电子显微镜-能谱仪(SEM-EDS)和比表面积分析仪(BET)对光催化剂进行了表征。在200 W紫外光下处理180分钟后,观察到0.5% Ag-TiO浓度时性能最佳,降解效率达到59%。随后优化了光催化剂负载量的影响,接着研究了光催化(PC)与过氧化氢(HO)耦合的协同效应。在0.01% v/v HO且协同系数为24的情况下,60分钟内实现了最高94%的降解效率。当将PC、HO和水力空化(HC)相结合时,观察到进一步增强,仅3分钟(1.5个流程)内就实现了MO的完全降解,协同系数高达42。降解过程对于单独的PC以及与HO结合的情况表现为伪一级动力学,对于HC表现为单流程降解模型。考察了各种清除剂对光催化过程的影响,突出了羟基自由基(•OH)和光生空穴(h)在降解机制中的关键作用。还讨论了阴离子和水基质对活性氧物种(ROS)生成和效率的影响,以及Ag-TiO催化剂的环境归宿。本研究强调了优化掺杂光催化剂组成和操作条件以最大化污染物降解效率的重要性,并通过协同作用展示了高级氧化过程中的重大进展。
ACS Omega. 2025-5-19
Materials (Basel). 2022-6-6
J Hazard Mater. 2019-6-15
J Environ Sci Health A Tox Hazard Subst Environ Eng. 2015
Environ Sci Pollut Res Int. 2019-12-14
Molecules. 2024-8-15
Environ Sci Pollut Res Int. 2024-5
Environ Sci Pollut Res Int. 2024-1
Environ Sci Pollut Res Int. 2024-1