Suppr超能文献

机器学习驱动的脓毒症风险预测中的社会人口统计学因素考量

Consideration of Sociodemographics in Machine Learning-Driven Sepsis Risk Prediction.

作者信息

Hauschildt Katrina E, Pan Annie, Bernstein Taylor, Admon Andrew J, Mukherjee Bhramar, Iwashyna Theodore J, Rountree Lillian

机构信息

Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD.

Department of Medicine, University of Michigan Medical School, Ann Arbor, MI.

出版信息

Crit Care Med. 2025 Jun 9. doi: 10.1097/CCM.0000000000006741.

Abstract

OBJECTIVES

Use of machine learning (ML) and artificial intelligence (AI) in prediction of sepsis and related outcomes is growing. Guidelines call for explicit reporting of study data demographics and stratified performance analyses to assess potential sociodemographic bias. We assessed reporting of sociodemographic data and other considerations, such as use of stratified analyses or use of so-call "fairness metrics", among AI and ML models in sepsis.

DATA SOURCES

PubMed identified systematic and narrative reviews from which studies were extracted using PubMed and Google Scholar.

STUDY SELECTION

Studies were extracted from selected review articles published between January 1, 2023, and June 30, 2024, and related to sepsis, risk prediction, and ML; we extracted studies predicting sepsis, sepsis-related outcomes, or sepsis treatment in adult populations.

DATA EXTRACTION

Data were extracted by two reviewers using predefined forms, and included study type, outcome of interest, setting, dataset used, reporting of sample sociodemographics, inclusion of sociodemographics as predictors, stratification by sociodemographics or assessment of fairness metrics, and reporting a lack of sociodemographic considerations as a limitation.

DATA SYNTHESIS

Thirteen of 96 review studies (14%) met inclusion criteria: six systematic reviews and seven narrative reviews. One hundred twenty of 170 studies (71%) extracted from these review articles were included in our review. Ninety-nine of 120 studies (83%) reported a measure of geography or where data was collected. Eighty (67%) reported sex/gender, 24 (20%) reported race/ethnicity, and 4 (3%) reported other sociodemographics. Only three stratified performance results (2%) by sociodemographics; none reported formal fairness metrics. Beyond a lack of geographic heterogeneity (39/120, 33%), few studies reported a lack of sociodemographic consideration as a limitation.

CONCLUSIONS

The inclusion of sociodemographic data and stratified assessment of performance-essential steps in developing equitable risk prediction tools-are possible but have yet to be consistently adopted.

摘要

目的

机器学习(ML)和人工智能(AI)在脓毒症及相关预后预测中的应用正在增加。指南要求明确报告研究数据的人口统计学信息和分层性能分析,以评估潜在的社会人口统计学偏差。我们评估了脓毒症领域人工智能和机器学习模型中社会人口统计学数据的报告情况以及其他因素,如分层分析的使用或所谓“公平性指标”的使用。

数据来源

PubMed检索出系统评价和叙述性综述,从中使用PubMed和谷歌学术搜索提取研究。

研究选择

从2023年1月1日至2024年6月30日发表的选定综述文章中提取与脓毒症、风险预测和机器学习相关的研究;我们提取了预测成年人群脓毒症、脓毒症相关预后或脓毒症治疗的研究。

数据提取

两名审阅者使用预定义表格提取数据,包括研究类型、感兴趣的结局、研究背景、使用的数据集、样本社会人口统计学信息的报告、将社会人口统计学信息作为预测因素纳入、按社会人口统计学分层或公平性指标评估,以及将缺乏社会人口统计学考虑报告为局限性。

数据综合

96项综述研究中有13项(14%)符合纳入标准:6项系统评价和7项叙述性综述。从这些综述文章中提取的170项研究中有120项(71%)纳入我们的综述。120项研究中有99项(83%)报告了地理信息或数据收集地点。80项(67%)报告了性别,24项(20%)报告了种族/民族,4项(3%)报告了其他社会人口统计学信息。只有三项按社会人口统计学分层的性能结果(2%);没有一项报告正式的公平性指标。除了缺乏地理异质性(39/120,33%)外,很少有研究将缺乏社会人口统计学考虑报告为局限性。

结论

纳入社会人口统计学数据和分层性能评估(开发公平风险预测工具的关键步骤)是可行的,但尚未得到一致采用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验