Mates-Torres Eric, Escolano Casado Guillermo, Mino Lorenzo, Balucani Nadia, Ugliengo Piero, Rimola Albert
Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain.
Dipartimento di Chimica and Nanomaterials for Industry and Sustainability (NIS) Centre, Università degli Studi di Torino, via P. Giuria 7, I-10125, Torino, Italy.
Phys Chem Chem Phys. 2025 Jun 18;27(24):13124-13134. doi: 10.1039/d5cp01699a.
The interaction between interstellar molecules and silicate dust plays a critical role in the chemical evolution of interstellar and circumstellar environments. In this work, we combine infrared (IR) spectroscopy with automated density functional theory (DFT) calculations to investigate the adsorption and vibrational signatures of CO and SO on forsterite surfaces. Experimental IR spectra collected under cryogenic conditions reveal coverage- and temperature-dependent features that evolve from physisorbed to chemisorbed regimes. To interpret these observations, we construct theoretical spectra from a large ensemble of adsorption configurations across multiple surface terminations, weighted by their Boltzmann distributions at 100 K and by a per-surface abundance factor. The resulting spectra reproduce key experimental features, enabling the identification of binding trends. For CO, we predict the transition from weakly bound species to carbonate-like modes at lower frequencies. For SO, our simulations identify the dominant bands due to bidentate and tridentate chemisorption. This integrative approach highlights the importance of surface morphology and thermodynamic weighting in reconciling theory and experiments providing a framework for the spectroscopic analysis of molecular adsorption on interstellar dust analogs.
星际分子与硅酸盐尘埃之间的相互作用在星际和星周环境的化学演化中起着关键作用。在这项工作中,我们将红外(IR)光谱与自动密度泛函理论(DFT)计算相结合,以研究CO和SO在镁橄榄石表面的吸附和振动特征。在低温条件下收集的实验红外光谱揭示了覆盖度和温度依赖性特征,这些特征从物理吸附状态演变为化学吸附状态。为了解释这些观测结果,我们从跨越多个表面终端的大量吸附构型集合构建理论光谱,并根据它们在100 K时的玻尔兹曼分布和每个表面的丰度因子进行加权。所得光谱再现了关键的实验特征,从而能够识别结合趋势。对于CO,我们预测在较低频率下从弱结合物种向类似碳酸盐模式的转变。对于SO,我们的模拟确定了由于双齿和三齿化学吸附产生的主要谱带。这种综合方法突出了表面形态和热力学加权在协调理论与实验方面的重要性,为星际尘埃类似物上分子吸附的光谱分析提供了一个框架。