Heinen Amelie Teresa, Heermant Saskia, Lauster Daniel Christian, Block Stephan, Kozuch Jacek
Physics Department, Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, Berlin, 14195, Germany.
Research Building SupraFAB, Freie Universität Berlin, Altensteinstr. 23a, Berlin, 14195, Germany.
Angew Chem Int Ed Engl. 2025 Jul 28;64(31):e202502998. doi: 10.1002/anie.202502998. Epub 2025 Jun 9.
Viral binding and membrane fusion are essential steps in viral infection, mediated by viral proteins that bind to host cell receptors and facilitate the fusion between viral and host membranes. Targeting these steps for the development of new antiviral strategies requires methods that enable investigating virus-membrane interactions under in-situ conditions, while providing mechanistic insights on a molecular level. Here, we demonstrate the use of surface-enhanced infrared absorption (SEIRA) spectroscopy combined with tethered bilayer lipid membranes (tBLMs) for the label-free detection of virus-membrane interactions, using the Influenza A/X-31 virus (IAV) as a model. Exploiting the nanometer-scale surface-sensitivity of SEIRA, we detect the vibrational fingerprint of IAV's hemagglutinin (HA) glycoprotein, as it specifically binds to sialic acid receptors of the ganglioside GD1a in the tBLM, mimicking the host membrane. Triggering viral fusion via a pH change, we identify structural changes of HA engaging with the host membrane model. Moreover, by constructing the tBLM from deuterated lipids, we utilize the vibrational isotope effect and distinguish between viral and model membrane, providing a basis to track lipid mixing. This approach establishes a powerful tool for spectroscopic studies of the function and inhibition of viral proteins, while still embedded in intact virus particles.
病毒结合和膜融合是病毒感染的关键步骤,由与宿主细胞受体结合并促进病毒膜与宿主膜融合的病毒蛋白介导。针对这些步骤开发新的抗病毒策略需要能够在原位条件下研究病毒 - 膜相互作用的方法,同时在分子水平上提供机制见解。在这里,我们展示了结合表面增强红外吸收(SEIRA)光谱与拴系双层脂质膜(tBLM)用于无标记检测病毒 - 膜相互作用,以甲型流感病毒X - 31(IAV)作为模型。利用SEIRA的纳米级表面敏感性,我们检测到IAV血凝素(HA)糖蛋白的振动指纹,因为它特异性结合tBLM中神经节苷脂GD1a的唾液酸受体,模拟宿主膜。通过pH变化触发病毒融合,我们确定了HA与宿主膜模型相互作用时的结构变化。此外,通过用氘代脂质构建tBLM,我们利用振动同位素效应区分病毒膜和模型膜,为追踪脂质混合提供了基础。这种方法为病毒蛋白功能和抑制的光谱研究建立了一个强大的工具,而病毒蛋白仍嵌入完整的病毒颗粒中。