O'Leary Kelly M, Slezak Tomasz, Kossiakoff Anthony A
Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637.
Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637.
Proc Natl Acad Sci U S A. 2025 Jun 17;122(24):e2424679122. doi: 10.1073/pnas.2424679122. Epub 2025 Jun 9.
Subcellular compartmentalization is integral to the spatial regulation of mechanistic target of rapamycin (mTOR) signaling. However, the biological outputs associated with location-specific mTOR signaling events are poorly understood and challenging to decouple. Here, we engineered synthetic intracellular antibodies (intrabodies) that are capable of modulating mTOR signaling with genetically programmable spatial resolution. Epitope-directed phage display was exploited to generate high affinity synthetic antibody fragments (Fabs) against the FKBP12-Rapamycin binding site of mTOR (mTOR). We determined high-resolution crystal structures of two unique Fabs that discriminate distinct conformational states of mTOR through recognition of its substrate recruitment interface. By leveraging these conformation-specific binders as intracellular probes, we uncovered the structural basis for an allosteric mechanism governing mTOR complex 1 (mTORC1) stability mediated by subtle structural adjustments within mTOR. Furthermore, our results demonstrated that synthetic binders emulate natural substrates by employing divergent yet complementary hydrophobic residues at defined positions, underscoring the broad molecular recognition capability of mTOR. Intracellular signaling studies showed differential time-dependent inhibition of S6 kinase 1 and Akt phosphorylation by genetically encoded intrabodies, thus supporting a mechanism of inhibition analogous to the natural product rapamycin. Finally, we implemented a feasible approach to selectively modulate mTOR signaling in the nucleus through spatially programmed intrabody expression. These findings establish intrabodies as versatile tools for dissecting the conformational regulation of mTORC1 and should be useful to explore how location-specific mTOR signaling influences disease progression.
亚细胞区室化是雷帕霉素机制性靶标(mTOR)信号传导空间调控的一个组成部分。然而,与特定位置的mTOR信号事件相关的生物学输出却知之甚少,并且难以解耦。在这里,我们设计了能够以基因可编程的空间分辨率调节mTOR信号传导的合成细胞内抗体(细胞内抗体)。利用表位导向的噬菌体展示来产生针对mTOR的FKBP12 - 雷帕霉素结合位点的高亲和力合成抗体片段(Fabs)。我们确定了两种独特Fabs的高分辨率晶体结构,它们通过识别mTOR的底物招募界面来区分mTOR的不同构象状态。通过利用这些构象特异性结合剂作为细胞内探针,我们揭示了一种变构机制的结构基础,该机制通过mTOR内的细微结构调整来控制mTOR复合物1(mTORC1)的稳定性。此外,我们的结果表明,合成结合剂通过在特定位置使用不同但互补的疏水残基来模拟天然底物,强调了mTOR广泛的分子识别能力。细胞内信号研究表明,通过基因编码的细胞内抗体对S6激酶1和Akt磷酸化具有不同的时间依赖性抑制作用,从而支持了一种类似于天然产物雷帕霉素的抑制机制。最后,我们实施了一种可行的方法,通过空间编程的细胞内抗体表达来选择性调节细胞核中的mTOR信号传导。这些发现确立了细胞内抗体作为剖析mTORC1构象调节的通用工具,并且对于探索特定位置的mTOR信号如何影响疾病进展应该是有用的。