Suppr超能文献

通过协同两性离子表面修饰和锆交联工程化生物人工心脏瓣膜以提高生物相容性和耐久性。

Engineering of bioprosthetic heart valves with synergistic zwitterionic surface modification and zirconium cross-linking for improved biocompatibility and durability.

作者信息

Li Kaijun, Hu Qinsheng, Wang Ling, Wu Chengcheng, Yang Li, Liu Gongyan, Wang Yunbing

机构信息

College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China.

Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Orthopedic Surgery, Ya'an People's Hospital, Ya'an 625000, China.

出版信息

Acta Biomater. 2025 Jul 1;201:266-282. doi: 10.1016/j.actbio.2025.06.010. Epub 2025 Jun 7.

Abstract

Bioprosthetic heart valves (BHVs) are frequently utilized in surgeries for heart valve replacement to address valvular heart disease (VHD). Despite their widespread use, BHVs still face challenges in clinical applications, such as thrombosis, calcification, immune responses, poor re-endothelialization, infection, component degradation, and mechanical failure, which are largely due to the heterogeneous cross-linking effects. To address these issues, we propose a synergistic engineering strategy based on sequential zwitterionic surface modification and zirconium cross-linking to improve the biocompatibility and durability of BHVs. After surface modification via ring-opening reactions of zwitterionic epoxy copolymers (PGSB) on collagen fibers of decellularized porcine pericardium (D-PP), the zwitterionic PGSB significantly promoted the uniform transfer of zirconium ions (Zr) and further coordinated with Zr to achieve homogeneous cross-linking between collagen fibers. Compared to conventional glutaraldehyde (GA)-cross-linked PP, PGSB/Zr-PP showed enhanced anti-thrombotic performance, attenuated immune rejection, accelerated endothelialization, and over 95 % reduction in calcification after 90 days of subcutaneous implantation, collectively indicating improved biocompatibility. Furthermore, this homogeneously cross-linked PGSB/Zr-PP exhibited undetectable component degradation and simultaneous improvements in both strength and toughness, all of which are essential for improving the durability of BHVs. Intriguingly, the zwitterionic sulfobetaine groups could be converted into bactericidal quaternary ammonium groups upon coordination with Zr, resulting in strong antibacterial and anti-biofilm activities beneficial for preventing life-threatening prosthetic valve endocarditis. More importantly, PGSB/Zr-PP met the ISO 5840-3 standards required for BHV applications in terms of hydrodynamic performance and 200-million-cycle durability. These results demonstrate that PGSB/Zr-PP would be a promising alternative to GA-cross-linked BHVs. STATEMENT OF SIGNIFICANCE: Mainstream glutaraldehyde-cross-linked BHV face persistent clinical challenges, including thrombosis, calcification, immune response, poor re-endothelialization, infection, component degradation, and mechanical failure. Although various non-glutaraldehyde cross-linkers have been investigated, few strategies effectively address these challenges due to the heterogeneous nature of cross-linking. Herein, we present a synergistic engineering strategy based on sequential zwitterionic surface modification and zirconium cross-linking. This strategy produces homogeneously cross-linked BHVs with comprehensive improvements in anti-thrombogenicity, immune compatibility, endothelialization, resistance to calcification and infection, enzymatic stability, and mechanical strength. Notably, the aortic BHV fabricated via this method met the ISO 5840-3 standards for hydrodynamic performance and durability, demonstrating its long-term clinical potential.

摘要

生物人工心脏瓣膜(BHVs)常用于心脏瓣膜置换手术以治疗心脏瓣膜疾病(VHD)。尽管其应用广泛,但BHVs在临床应用中仍面临诸多挑战,如血栓形成、钙化、免疫反应、再内皮化不良、感染、组件降解和机械故障等,这些主要归因于异质交联效应。为解决这些问题,我们提出一种基于两性离子表面修饰和锆交联的协同工程策略,以提高BHVs的生物相容性和耐久性。通过两性离子环氧共聚物(PGSB)在脱细胞猪心包(D-PP)胶原纤维上的开环反应进行表面修饰后,两性离子PGSB显著促进了锆离子(Zr)的均匀转移,并进一步与Zr配位,实现胶原纤维之间的均匀交联。与传统戊二醛(GA)交联的PP相比,PGSB/Zr-PP在皮下植入90天后表现出增强的抗血栓性能、减弱的免疫排斥反应、加速的内皮化以及钙化减少超过95%,总体表明生物相容性得到改善。此外,这种均匀交联的PGSB/Zr-PP表现出不可检测的组件降解,同时强度和韧性均得到提高,所有这些对于提高BHVs的耐久性至关重要。有趣的是,两性离子磺基甜菜碱基团在与Zr配位后可转化为杀菌季铵基团,从而产生强大的抗菌和抗生物膜活性,有利于预防危及生命的人工瓣膜心内膜炎。更重要的是,PGSB/Zr-PP在流体动力学性能和2亿次循环耐久性方面符合BHVs应用所需的ISO 5840-3标准。这些结果表明,PGSB/Zr-PP有望成为GA交联BHVs的替代物。重要意义声明:主流的戊二醛交联BHVs面临持续的临床挑战,包括血栓形成、钙化、免疫反应、再内皮化不良、感染、组件降解和机械故障。尽管已经研究了各种非戊二醛交联剂,但由于交联的异质性,很少有策略能有效应对这些挑战。在此,我们提出一种基于两性离子表面修饰和锆交联的协同工程策略。该策略产生均匀交联的BHVs,在抗血栓形成性、免疫相容性、内皮化、抗钙化和抗感染性、酶稳定性以及机械强度方面均有全面改善。值得注意的是,通过这种方法制造的主动脉BHVs符合流体动力学性能和耐久性的ISO 5840-3标准,显示出其长期临床潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验