Suppr超能文献

与EQ-5D-3L的TTO值集相比,VAS值集在中国人群中仍有其自身的应用价值。

VAS value set still has its own application value compare with TTO value set of EQ-5D-3L in Chinese population.

作者信息

Zhuo Lin, Gao Siyuan, Jin Rui, Zhuo Lang, Wang Xiuying

机构信息

Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, 100044, China.

School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.

出版信息

BMC Med Res Methodol. 2025 Jun 9;25(1):158. doi: 10.1186/s12874-025-02609-y.

Abstract

OBJECTIVE

To develop a Chinese visual analogue scale (VAS) value set for Europe Quality of Life Questionnaire (EQ-5D-3L) and compare it with the time trade-off (TTO) value set which was constructed based on the same sample.

METHODS

An adapted Measurement and Valuation of Health (MVH) protocol was applied with VAS method. EQ-5D-3L was used in face-to-face interviews conducted by trained interviewers with participants selected via multi-stage stratified clustered random sample. Fifteen hypothetical health statuses (11 random states in MVH protocol, plus full health, severe problems for all dimensions, unconscious, and death) were assigned for assessment individually. Ordinary least square (OLS), general least square (GLS), and weighted least square (WLS) models were constructed. Five categories of indices, including quality of original data, distribution of rescaled values, goodness of fit of models, distribution of predicted values, and dimensions order were adopted to compare between Chinese VAS and TTO value sets.

RESULTS

All 5,939 participants aged 15 and over were completely interviewed; 5,884 eligible participants were included in constructing models. Model 2 was the best for having 4 out of 7 indices of goodness of fit. Comparing with the TTO value set, Adjusted R-square of Model2 increased from 0.354 to 0.670;the mean absolute error decreased from 0.0838 to 0.0319; and the Pearson correlation coefficient between predicted and mean values increased from0.8989 to 0.9837. Model 2 gave uniformly lower values than Chinese TTO value set. VAS method had a higher responsive rate, less inconsistency, lower skewed values, and better goodness of fit values.

CONCLUSIONS

We recommend VAS value set, Model 2, as the reference of scoring algorithm when using EQ-5D-3L in large scale survey of Chinese population.

摘要

目的

制定适用于欧洲生活质量问卷(EQ-5D-3L)的中国视觉模拟量表(VAS)值集,并将其与基于相同样本构建的时间权衡(TTO)值集进行比较。

方法

采用改良的健康测量与估值(MVH)方案及VAS方法。通过多阶段分层整群随机抽样选取参与者,由经过培训的访员进行面对面访谈,使用EQ-5D-3L。分别对15种假设健康状态(MVH方案中的11种随机状态,加上完全健康、所有维度均有严重问题、无意识和死亡)进行单独评估。构建普通最小二乘法(OLS)、广义最小二乘法(GLS)和加权最小二乘法(WLS)模型。采用原始数据质量、重新缩放值的分布、模型拟合优度、预测值分布和维度顺序五类指标对中国VAS和TTO值集进行比较。

结果

共对5939名15岁及以上参与者进行了完整访谈;5884名符合条件的参与者被纳入模型构建。模型2在拟合优度的7项指标中有4项表现最佳。与TTO值集相比,模型2的调整R方从0.354提高到0.670;平均绝对误差从0.0838降至0.0319;预测值与均值之间的皮尔逊相关系数从0.8989提高到0.9837。模型2给出的值普遍低于中国TTO值集。VAS方法具有更高的响应率、更少的不一致性、更低的偏态值和更好的拟合优度值。

结论

我们推荐VAS值集模型2,作为在中国人群大规模调查中使用EQ-5D-3L时评分算法的参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1964/12147354/3b7bfa8e78bf/12874_2025_2609_Fig1_HTML.jpg

相似文献

1
VAS value set still has its own application value compare with TTO value set of EQ-5D-3L in Chinese population.
BMC Med Res Methodol. 2025 Jun 9;25(1):158. doi: 10.1186/s12874-025-02609-y.
2
Similar responses to EQ-5D-3L by two elicitation methods: visual analogue scale and time trade-off.
BMC Med Res Methodol. 2020 May 14;20(1):118. doi: 10.1186/s12874-020-01008-9.
3
Time Trade-Off Value Set for EQ-5D-3L Based on a Nationally Representative Chinese Population Survey.
Value Health. 2018 Nov;21(11):1330-1337. doi: 10.1016/j.jval.2018.04.1370. Epub 2018 May 18.
4
Validity, reliability, and feasibility of EQ-5D-3L, VAS, and time trade-off among Jordanians.
J Healthc Qual Res. 2025 Jan-Feb;40(1):29-38. doi: 10.1016/j.jhqr.2024.10.001. Epub 2024 Nov 27.
5
Experience-Based Swedish TTO and VAS Value Sets for EQ-5D-5L Health States.
Pharmacoeconomics. 2020 Aug;38(8):839-856. doi: 10.1007/s40273-020-00905-7.
6
Multiplicative modelling of EQ-5D-3L TTO and VAS values.
Eur J Health Econ. 2020 Dec;21(9):1411-1420. doi: 10.1007/s10198-020-01233-5. Epub 2020 Sep 5.
8
Exploring EQ-5D-Y-3L Experience-Based VAS Values Derived Among Adolescents.
Appl Health Econ Health Policy. 2022 May;20(3):383-393. doi: 10.1007/s40258-021-00713-w. Epub 2022 Jan 26.
9
Estimating an EQ-5D-Y-3L Value Set for Indonesia by Mapping the DCE onto TTO Values.
Pharmacoeconomics. 2022 Dec;40(Suppl 2):157-167. doi: 10.1007/s40273-022-01210-1. Epub 2022 Nov 9.
10
Argentine valuation of the EQ-5D health states.
Value Health. 2009 Jun;12(4):587-96. doi: 10.1111/j.1524-4733.2008.00468.x. Epub 2008 Nov 12.

本文引用的文献

2
Weighted Linear Regression Improves Accuracy of Quantitative Elemental Bioimaging by Means of LA-ICP-MS.
Anal Chem. 2021 Nov 30;93(47):15720-15727. doi: 10.1021/acs.analchem.1c03630. Epub 2021 Nov 16.
3
Similar responses to EQ-5D-3L by two elicitation methods: visual analogue scale and time trade-off.
BMC Med Res Methodol. 2020 May 14;20(1):118. doi: 10.1186/s12874-020-01008-9.
4
Time Trade-Off Value Set for EQ-5D-3L Based on a Nationally Representative Chinese Population Survey.
Value Health. 2018 Nov;21(11):1330-1337. doi: 10.1016/j.jval.2018.04.1370. Epub 2018 May 18.
5
Hospice and Palliative Care in China: Development and Challenges.
Asia Pac J Oncol Nurs. 2018 Jan-Mar;5(1):26-32. doi: 10.4103/apjon.apjon_72_17.
6
Socioeconomic Differences and Trends in the Place of Death among Elderly People in China.
Int J Environ Res Public Health. 2017 Oct 11;14(10):1210. doi: 10.3390/ijerph14101210.
7
Logical inconsistencies in time trade-off valuation of EQ-5D-5L health states: Whose fault is it?
PLoS One. 2017 Sep 21;12(9):e0184883. doi: 10.1371/journal.pone.0184883. eCollection 2017.
8
Valuing health-related quality of life: An EQ-5D-5L value set for England.
Health Econ. 2018 Jan;27(1):7-22. doi: 10.1002/hec.3564. Epub 2017 Aug 22.
9
Development of Palliative Care in China: A Tale of Three Cities.
Oncologist. 2017 Nov;22(11):1362-1367. doi: 10.1634/theoncologist.2017-0128. Epub 2017 Jul 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验