Health Services Management Department, Guizhou Medical University, Guiyang, China; College of Pharmacy, Jinan University, Guangzhou, China.
Health Services Research Center, Akershus University Hospital, Lørenskog, Norway; Maths in Health B.V., Rotterdam, The Netherlands.
Value Health. 2023 May;26(5):685-693. doi: 10.1016/j.jval.2022.11.001. Epub 2022 Nov 11.
A recent study found that negative utility values elicited using composite time trade-off (TTO) were barely associated with the severity of EQ-5D-5L health states, suggesting poor discriminative ability. Assuming negative values provide limited information, this study aimed to explore the usefulness of censoring negative TTO values at 0 in modeling EQ-5D-5L valuation data.
We analyzed EQ-5D-5L valuation data from China, The Netherlands, Canada, Singapore, and Thailand. For each data set, we estimated value sets using 2 Tobit models, one left-censored at -1 (current practice) and one left-censored at 0 (our proposed method), and compared the model performances. We hypothesized that censoring at 0 and censoring at -1 would produce similar values, though on slightly different scales.
When censoring at 0, logical inconsistencies and statistical significance were improved but the value range was compressed. In the cross-attribute level effects model, the 3-level parameters were similar between the models censored at 0 and -1, but the rank order of some dimension parameters was altered. Health state values predicted by the 2 censoring models approximated a perfect agreement after rescaling.
Censoring TTO values at 0 improved model estimation and fit but produced higher utility values than models censoring at -1. Investigators of future EQ-5D value set studies using the composite TTO method are advised to examine the validity of negative TTO values before choosing modeling strategies.
最近的一项研究发现,使用复合时间权衡法(TTO)得出的负效价值与 EQ-5D-5L 健康状态的严重程度几乎没有关联,表明其鉴别能力较差。假设负效价值提供的信息有限,本研究旨在探索在建模 EQ-5D-5L 估值数据时,将 TTO 的负效价值截尾至 0 的方法的有用性。
我们分析了来自中国、荷兰、加拿大、新加坡和泰国的 EQ-5D-5L 估值数据。对于每个数据集,我们使用 2 个 Tobit 模型估计效价值,一个在-1 处左截尾(当前实践),一个在 0 处左截尾(我们提出的方法),并比较了模型性能。我们假设,在 0 处截尾和在-1 处截尾会产生相似的效价值,尽管在略微不同的尺度上。
当在 0 处截尾时,逻辑不一致和统计显著性得到改善,但效价值范围被压缩。在跨属性水平效应模型中,在 0 处和-1 处截尾的模型中,3 级参数相似,但一些维度参数的秩序发生了改变。经缩放后,由 2 个截尾模型预测的健康状态效价值接近完全一致。
在 0 处截尾 TTO 值可以改善模型估计和拟合,但产生的效价值高于在-1 处截尾的模型。使用复合 TTO 方法进行未来 EQ-5D 效价值研究的研究人员建议,在选择建模策略之前,应检查 TTO 的负效价值的有效性。