Capelli Luca, Marzari Sofia, Spezzani Elena, Bertucci Alessandro
Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, Parma 43124, Italy.
J Am Chem Soc. 2025 Jun 18;147(24):21184-21193. doi: 10.1021/jacs.5c06913. Epub 2025 Jun 9.
CRISPR-Cas systems have advanced many domains in life sciences, enabling diverse applications in gene editing, diagnostics, and biosensing. Here, we introduce a platform that leverages transcription factors (TFs) to regulate CRISPR-Cas12a trans-cleavage activity via engineered DNA translators. These dynamic DNA structures respond to TF binding by switching conformations, modulating Cas12a activity. Using TATA-binding protein and Myc-Max as TF models, we optimized DNA translators for precise and tunable control with rapid response kinetics. We demonstrated the platform's specificity and versatility by integrating TF-induced regulation into synthetic biology networks, including the activation of a fluorogenic RNA aptamer (Mango III) and the creation of an artificial multimolecular communication pathway between Cas12a and Cas13a. This work establishes TFs as effective regulators of CRISPR-Cas systems, enabling novel protein-nucleic acid communication channels, showing potential for novel synthetic biology applications.
CRISPR-Cas系统推动了生命科学多个领域的发展,在基因编辑、诊断和生物传感等方面实现了多种应用。在此,我们介绍一个平台,该平台利用转录因子(TFs)通过工程化DNA转译器来调节CRISPR-Cas12a的反式切割活性。这些动态DNA结构通过构象转换对TF结合作出反应,从而调节Cas12a的活性。以TATA结合蛋白和Myc-Max作为TF模型,我们优化了DNA转译器,以实现具有快速反应动力学的精确且可调的控制。我们通过将TF诱导的调控整合到合成生物学网络中,展示了该平台的特异性和多功能性,包括激活荧光RNA适体(Mango III)以及在Cas12a和Cas13a之间创建人工多分子通信途径。这项工作确立了TFs作为CRISPR-Cas系统有效调控因子的地位,开启了新型蛋白质-核酸通信通道,展现了新型合成生物学应用的潜力。