Suppr超能文献

I-E*型CRISPR-Cas通过靶向内源性组氨酸利用系统上调细菌毒力。

Type I-E* CRISPR-Cas of upregulates bacterial virulence by targeting endogenous histidine utilization system.

作者信息

Li Jieying, Liu Yuxiao, Jiang Jingsi, Chen Fang, Zhang Nan, Kang Xun, Liu Lin, Wang Yingjuan, Xia Qianfeng, Zhu Chuanlong, Kuang Dai

机构信息

NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China.

Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.

出版信息

mSphere. 2025 Jun 25;10(6):e0021525. doi: 10.1128/msphere.00215-25. Epub 2025 May 19.

Abstract

is a globally recognized microbial pathogen with significant clinical impact. The bacterium harbors the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems, which provide adaptive immunity against invading foreign nucleic acids. Recent studies suggest that certain CRISPR-Cas systems can regulate endogenous genes, influencing bacterial virulence. However, their role in regulating pathogenicity in remains poorly understood. This study investigates the regulatory role of the type I-E* CRISPR-Cas system in a hypervirulent strain, focusing on its impact on histidine metabolism and pathogenicity. Transcriptome analyses identified differentially expressed genes (DEGs) between the -deletion and wild-type strains, including significant upregulation of the histidine utilization (Hut) operon and downregulation of biofilm-related genes. These molecular changes resulted in enhanced histidine metabolic activity, reduced biofilm formation, attenuated virulence in A549 lung epithelial cells, and improved survival of , as validated through phenotypic and virulence assays. Our bioinformatic analysis indicated that the CRISPR-Cas system in targets the sequence, which is part of the Hut operon. Furthermore, the overexpression of mitigated CRISPR-Cas-mediated repression of the Hut operon, as observed in virulence assays, while simultaneous deletion of and restored the reduced virulence in the Δ strain. Additionally, deletion of significantly enhances the growth of the strain in medium with histidine as the sole carbon source, highlighting the intricate regulatory role of the CRISPR-Cas system in metabolic adaptation. Collectively, these findings uncover a novel role for the CRISPR-Cas system in regulating metabolic pathways and virulence in hypervirulent .Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems are primarily recognized for their roles in adaptive immunity against foreign genetic elements in bacteria. However, emerging evidence indicates that these systems can also regulate endogenous genes, thereby influencing bacterial physiology and virulence. In this study, we demonstrate that the type I-E* CRISPR-Cas system in targets the gene, a critical component of the histidine utilization (Hut) pathway. This targeting potentially impacts transcription and alters the expression of other genes, ultimately enhancing bacterial virulence. Our findings reveal a previously unrecognized regulatory mechanism through which CRISPR-Cas systems facilitate metabolic adaptation and pathogenicity in . This study broadens our understanding of the multifaceted roles of CRISPR-Cas systems in bacterial physiology and pathobiology, with implications for clinically relevant pathogens.

摘要

是一种具有重大临床影响的全球公认的微生物病原体。该细菌拥有成簇规律间隔短回文重复序列(CRISPR)-Cas系统,可提供针对入侵外源核酸的适应性免疫。最近的研究表明,某些CRISPR-Cas系统可以调节内源性基因,影响细菌毒力。然而,它们在调节致病性方面的作用仍知之甚少。本研究调查了I-E型CRISPR-Cas系统在高毒力菌株中的调节作用,重点关注其对组氨酸代谢和致病性的影响。转录组分析确定了缺失菌株和野生型菌株之间的差异表达基因(DEG),包括组氨酸利用(Hut)操纵子的显著上调和生物膜相关基因的下调。这些分子变化导致组氨酸代谢活性增强、生物膜形成减少、在A549肺上皮细胞中的毒力减弱以及菌株存活率提高,这通过表型和毒力测定得到了验证。我们的生物信息学分析表明,该菌株中的CRISPR-Cas系统靶向Hut操纵子的一部分序列。此外,如在毒力测定中观察到的,的过表达减轻了CRISPR-Cas介导的对Hut操纵子的抑制,而同时缺失和恢复了Δ菌株中降低的毒力。此外,缺失显著增强了该菌株在以组氨酸为唯一碳源的培养基中的生长,突出了CRISPR-Cas系统在代谢适应中的复杂调节作用。总体而言,这些发现揭示了CRISPR-Cas系统在调节高毒力菌株的代谢途径和毒力方面的新作用。成簇规律间隔短回文重复序列(CRISPR)-Cas系统主要因其在细菌中针对外源遗传元件的适应性免疫中的作用而被认可。然而,新出现的证据表明,这些系统也可以调节内源性基因,从而影响细菌生理学和毒力。在本研究中,我们证明了该菌株中的I-E型CRISPR-Cas系统靶向基因,这是组氨酸利用(Hut)途径的关键组成部分。这种靶向可能影响转录并改变其他基因的表达,最终增强细菌毒力。我们的发现揭示了一种以前未被认识的调节机制,通过该机制CRISPR-Cas系统促进了该菌株的代谢适应和致病性。本研究拓宽了我们对CRISPR-Cas系统在细菌生理学和病理生物学中多方面作用的理解,对临床相关病原体具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e697/12188710/860b129983bb/msphere.00215-25.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验