Suppr超能文献

内镜逆行胰胆管造影术后胰腺炎模型的开发与外部验证

Development and external validation of a model for post-endoscopic retrograde cholangiopancreatography pancreatitis.

作者信息

Wang Gang, Sun Qikai, Zhu Hai, Qiao Song, Xu Peng, He Xiangyu, He Xiangkun, Hu Xiaosi, Song Mingming, Zhang Qiuyan, Feng Zhenyu, Chen Yue, Gao Yue, Jin Zhiyuan, Li Wen, Tang Haizheng, Yan Chaoqun, Wei Yajun, Xu Shibo, Hu Gang, Zhang Xiuhua, Zheng Jinxin, Wang Cheng

机构信息

Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, China.

Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230001, China.

出版信息

iScience. 2025 May 2;28(6):112570. doi: 10.1016/j.isci.2025.112570. eCollection 2025 Jun 20.

Abstract

Post-endoscopic retrograde cholangiopancreatography (ERCP) pancreatitis (PEP) is a common complication in patients undergoing ERCP for choledocholithiasis, yet effective predictive models are lacking. This study included 2,247 patients who underwent ERCP for complete stone removal at the First Affiliated Hospital of USTC from January 2015 to January 2023. Six machine learning algorithms were utilized, incorporating 25 clinical parameters, to develop a predictive model for PEP risk. The random forest (RF) algorithm achieved the highest accuracy, with an area under the receiver operating characteristic curve (AUC) of 0.947 in the internal dataset. Key risk factors for PEP identified include difficult cannulation, a history of pancreatitis, smaller common bile duct diameter, and female gender. Validation with datasets from 12 external centers showed AUC values ranging from 0.576 to 0.913, with an average of 0.768. An interactive R Shiny web application was also developed, offering a user-friendly tool for predicting PEP risk and enabling individualized management.

摘要

内镜逆行胰胆管造影术(ERCP)后胰腺炎(PEP)是接受ERCP治疗胆总管结石患者的常见并发症,但缺乏有效的预测模型。本研究纳入了2015年1月至2023年1月在中国科学技术大学附属第一医院接受ERCP取净结石治疗的2247例患者。利用六种机器学习算法,纳入25个临床参数,建立了PEP风险预测模型。随机森林(RF)算法在内部数据集中获得了最高准确率,受试者操作特征曲线(AUC)下面积为0.947。确定的PEP关键风险因素包括插管困难、胰腺炎病史、胆总管直径较小和女性性别。对来自12个外部中心的数据集进行验证,AUC值范围为0.576至0.913,平均为0.768。还开发了一个交互式R Shiny网络应用程序,为预测PEP风险提供了一个用户友好的工具,并实现个性化管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3cd/12146526/3e499ad523a4/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验