Suppr超能文献

人工智能在预测内镜逆行胰胆管造影术后胰腺炎中的应用。

Artificial intelligence in a prediction model for postendoscopic retrograde cholangiopancreatography pancreatitis.

机构信息

Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Aichi, Japan.

Department of Gastroenterology and Hepatology, Fujita Health University Graduate School of Medicine, Aichi, Japan.

出版信息

Dig Endosc. 2024 Apr;36(4):463-472. doi: 10.1111/den.14622. Epub 2023 Jul 25.

Abstract

OBJECTIVES

In this study we aimed to develop an artificial intelligence-based model for predicting postendoscopic retrograde cholangiopancreatography (ERCP) pancreatitis (PEP).

METHODS

We retrospectively reviewed ERCP patients at Nagoya University Hospital (NUH) and Toyota Memorial Hospital (TMH). We constructed two prediction models, a random forest (RF), one of the machine-learning algorithms, and a logistic regression (LR) model. First, we selected features of each model from 40 possible features. Then the models were trained and validated using three fold cross-validation in the NUH cohort and tested in the TMH cohort. The area under the receiver operating characteristic curve (AUROC) was used to assess model performance. Finally, using the output parameters of the RF model, we classified the patients into low-, medium-, and high-risk groups.

RESULTS

A total of 615 patients at NUH and 544 patients at TMH were enrolled. Ten features were selected for the RF model, including albumin, creatinine, biliary tract cancer, pancreatic cancer, bile duct stone, total procedure time, pancreatic duct injection, pancreatic guidewire-assisted technique without a pancreatic stent, intraductal ultrasonography, and bile duct biopsy. In the three fold cross-validation, the RF model showed better predictive ability than the LR model (AUROC 0.821 vs. 0.660). In the test, the RF model also showed better performance (AUROC 0.770 vs. 0.663, P = 0.002). Based on the RF model, we classified the patients according to the incidence of PEP (2.9%, 10.0%, and 23.9%).

CONCLUSION

We developed an RF model. Machine-learning algorithms could be powerful tools to develop accurate prediction models.

摘要

目的

本研究旨在开发一种基于人工智能的预测经内镜逆行胰胆管造影术(ERCP)后胰腺炎(PEP)的模型。

方法

我们回顾性分析了名古屋大学医院(NUH)和丰田纪念医院(TMH)的 ERCP 患者。我们构建了两个预测模型,一种是机器学习算法中的随机森林(RF),另一种是逻辑回归(LR)模型。首先,我们从 40 种可能的特征中选择每种模型的特征。然后,我们使用 NUH 队列的三折交叉验证对模型进行训练和验证,并在 TMH 队列中进行测试。使用接收者操作特征曲线下的面积(AUROC)评估模型性能。最后,使用 RF 模型的输出参数,我们将患者分为低、中、高危组。

结果

共有 615 名 NUH 患者和 544 名 TMH 患者入组。RF 模型选择了 10 个特征,包括白蛋白、肌酐、胆道癌、胰腺癌、胆管结石、总手术时间、胰管注射、无胰管支架的胰管导丝辅助技术、胆管内超声和胆管活检。在三折交叉验证中,RF 模型的预测能力优于 LR 模型(AUROC 0.821 与 0.660)。在测试中,RF 模型也表现出更好的性能(AUROC 0.770 与 0.663,P=0.002)。基于 RF 模型,我们根据 PEP 的发生率对患者进行分类(2.9%、10.0%和 23.9%)。

结论

我们开发了一种 RF 模型。机器学习算法可以成为开发准确预测模型的有力工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验