Suppr超能文献

基于改进的YOLOv8n模型的玉米种子发芽率研究

Study on the germination rate of maize seeds based on improved YOLOv8n model.

作者信息

Yu Helong, Zhao Jiayao, Bi Chunguang, Chen Jing, Zhao Ming

机构信息

College of Information Technology, Jilin Agricultural University, Changchun, China.

Smart Agriculture Research Institute, Jilin Agricultural University, Changchun, China.

出版信息

Front Plant Sci. 2025 May 26;16:1555440. doi: 10.3389/fpls.2025.1555440. eCollection 2025.

Abstract

The germination potential of corn seeds, a key index for assessing their quality and directly associated with the ultimate corn yield, is currently defined in a way that cannot effectively portray the seed germination rate, and the prevalent measurement methods are traditional, consuming substantial process resources. To tackle these issues, this paper employs a public corn seed germination dataset, adds noise to it to simulate real - world production conditions, and ultimately acquires a dataset comprising 8148 images. It then proposes an enhanced YOLOv8 target detection model, EBS - YOLOv8, for detecting corn seed germination. Specifically, the ECA lightweight attention mechanism is introduced to decrease small - target feature loss, assist in accurate target recognition, and remove redundant features; simultaneously, the P2BiFPN multiscale feature fusion technique is utilized to boost the detection ability for small targets; furthermore, the ScConv convolution is adopted to enhance the feature - extraction capacity and improve detection accuracy. Combined with the improved model, this paper also proposed a mathematical modeling algorithmnew method for measuring seed germination potential and observing seed germination rate. The results indicate that the proposed model attains a mean average precision at 50% Intersection over Union (mAP50) value of 98.9%, a mean average precision in the range of 50% - 95% Intersection over Union (mAP50 - 95) value of 95.8%, an accuracy of 96.7%, and a recall of 96.3%. In comparison with the original model, the mAP50 has increased by 0.9% and the mAP50 - 95 value has witnessed a 3.7% increment. The experiments have demonstrated that the research method for germination potential put forward in this paper can effectively depict the rate variation of seeds during the germination process, thus offering a novel perspective for future research on seed germination potential.

摘要

玉米种子的发芽势是评估其质量的关键指标,直接关系到最终的玉米产量,目前其定义方式无法有效反映种子发芽率,且普遍采用的测量方法较为传统,消耗大量流程资源。为解决这些问题,本文利用一个公开的玉米种子发芽数据集,对其添加噪声以模拟实际生产条件,最终获得一个包含8148张图像的数据集。然后提出一种用于检测玉米种子发芽的增强型YOLOv8目标检测模型EBS - YOLOv8。具体而言,引入ECA轻量级注意力机制以减少小目标特征损失,辅助准确的目标识别并去除冗余特征;同时,利用P2BiFPN多尺度特征融合技术提升对小目标的检测能力;此外,采用ScConv卷积增强特征提取能力并提高检测精度。结合改进后的模型,本文还提出了一种测量种子发芽势和观察种子发芽率的数学建模算法新方法。结果表明,所提出的模型在50%交并比(mAP50)下的平均精度均值为98.9%,在50% - 95%交并比(mAP50 - 95)范围内的平均精度均值为95.8%,准确率为96.7%,召回率为96.3%。与原始模型相比,mAP50提高了0.9%,mAP50 - 95值提高了3.7%。实验表明,本文提出的发芽势研究方法能够有效描绘种子在发芽过程中的速率变化,从而为未来种子发芽势研究提供了新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75cd/12146332/fd4f061aad1e/fpls-16-1555440-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验