Suppr超能文献

利用6年尿素呼气试验(UBT)数据进行感染与风险分层的回顾性队列研究。

Retrospective cohort study of infection and risk stratification using 6-year UBT data.

作者信息

Chen Yan, Wang Miaojuan, Wang Jianfeng

机构信息

Department of General Practice, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, China.

Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, China.

出版信息

Front Public Health. 2025 May 26;13:1563841. doi: 10.3389/fpubh.2025.1563841. eCollection 2025.

Abstract

BACKGROUND

() infection is a major global health concern, linked to gastric cancer and metabolic disorders. Despite its widespread prevalence, accurate risk stratification remains challenging. This study aims to develop a machine learning (ML)-based risk prediction model using 6-year longitudinal Urea Breath Test (UBT) data to identify metabolic alterations associated with chronic infection.

METHODS

A retrospective cohort study was conducted using health examination data from 3,409 individuals between 2016 and 2021. Participants were stratified into -positive and negative groups based on longitudinal UBT results. Key metabolic markers, including HbA1c, LDL-C, BMI, and WBC, were analyzed. Three predictive models-logistic regression, random forest, and XGBoost-were compared to assess their predictive performance.

RESULTS

Among the cohort, 20.5% exhibited chronic infection. Infected individuals had significantly higher HbA1c (+1.2%, < 0.01), LDL-C (+15 mg/dL, < 0.05), and WBC levels, alongside lower albumin (-0.8 g/dL, < 0.01). The XGBoost model outperformed others (AUC = 0.6809, Accuracy = 81.13%) in predicting infection risk. A subgroup of 4.0% was identified as high-risk, highlighting the potential for early intervention.

CONCLUSION

This study underscores the interplay between chronic infection and metabolic dysfunction, offering new perspectives on risk prediction using machine learning. The XGBoost model demonstrated reliable performance in stratifying infection risk based on accessible clinical markers. Its integration into routine screening protocols could enhance early detection and personalized intervention strategies. Further studies should validate these findings across broader populations and incorporate additional risk factors.

摘要

背景

()感染是一个重大的全球健康问题,与胃癌和代谢紊乱有关。尽管其广泛流行,但准确的风险分层仍然具有挑战性。本研究旨在利用6年纵向尿素呼气试验(UBT)数据开发一种基于机器学习(ML)的风险预测模型,以识别与慢性()感染相关的代谢改变。

方法

使用2016年至2021年间3409名个体的健康检查数据进行回顾性队列研究。根据纵向UBT结果将参与者分为()阳性和阴性组。分析了包括糖化血红蛋白(HbA1c)、低密度脂蛋白胆固醇(LDL-C)、体重指数(BMI)和白细胞(WBC)在内的关键代谢标志物。比较了三种预测模型——逻辑回归、随机森林和XGBoost——以评估它们的预测性能。

结果

在该队列中,20.5%的人表现出慢性()感染。感染个体的糖化血红蛋白显著更高(+1.2%,P<0.01)、低密度脂蛋白胆固醇更高(+15mg/dL,P<0.05)以及白细胞水平更高,同时白蛋白更低(-0.8g/dL,P<0.01)。XGBoost模型在预测感染风险方面优于其他模型(曲线下面积[AUC]=0.6809,准确率=81.13%)。4.0%的亚组被确定为高危人群,凸显了早期干预的潜力。

结论

本研究强调了慢性()感染与代谢功能障碍之间的相互作用,为使用机器学习进行风险预测提供了新的视角。XGBoost模型在基于可获取的临床标志物对感染风险进行分层方面表现出可靠的性能。将其纳入常规筛查方案可加强早期检测和个性化干预策略。进一步的研究应在更广泛的人群中验证这些发现,并纳入其他风险因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8937/12146378/fd8cfd401aaf/fpubh-13-1563841-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验