Chai Feifei, Xu Youkui, Li Lanlan, Peng Guoqiang, Li Hengxin, Li Guiqiang, Li Dongdong, Wang Qian, Yao Zhun
College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China.
School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China.
Adv Sci (Weinh). 2025 Sep;12(33):e07896. doi: 10.1002/advs.202507896. Epub 2025 Jun 10.
Zero-dimensinoal (0D) manganese-based metal halides (MHs) demonstrate excellent structural tunable through organic cation design, enabling precise control of Mn─Mn distances to modulate critical photoelectric physical properties. Here, two novel 0D PTAMnBr (PTA = phenyltrimethylammonium) are synthesized and DMAMnBr (DMA = dimethylammonium) wafer with a manipulation of octahedra are synthesized by a precise molecular design. Structural analysis reveals that the PTA-functional group with extended π-conjugation lengths increases the Mn─Mn distance, results in a lower energy transfer and reduced exciton binding energy compared to DMA⁺ (linear carbon chain). Consequently, PTAMnBr demonstrates an enhanced photoluminescence quantum yield and prolonged exciton lifetime. The engineered X-ray detector based on PTAMnBr wafer exhibits a higher sensitivity of 1122 µC Gy cm and a lower detection limit of 95 nGy s, while DMAMnBr device are 708.2 µC Gy cm and 180 nGy s, respectively, which paves the way for high-efficiency photoelectronic applications. This suggests that molecular engineering is a robust approach for designing high-performance 0D manganese halides for radiation detection.
零维(0D)锰基金属卤化物(MHs)通过有机阳离子设计展现出优异的结构可调控性,能够精确控制Mn─Mn间距以调节关键的光电物理性质。在此,通过精确的分子设计合成了两种新型的0D PTAMnBr(PTA = 苯基三甲基铵)以及具有八面体操控结构的DMAMnBr(DMA = 二甲基铵)晶片。结构分析表明,具有扩展π共轭长度的PTA官能团增加了Mn─Mn间距,与DMA⁺(线性碳链)相比,导致更低的能量转移和激子结合能。因此,PTAMnBr表现出增强的光致发光量子产率和延长的激子寿命。基于PTAMnBr晶片设计的X射线探测器具有1122 µC Gy⁻¹ cm²的更高灵敏度和95 nGy s⁻¹的更低检测限,而DMAMnBr器件的灵敏度和检测限分别为708.2 µC Gy⁻¹ cm²和180 nGy s⁻¹,这为高效光电子应用铺平了道路。这表明分子工程是设计用于辐射检测的高性能0D锰卤化物的一种有效方法。