School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning530004, China.
Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha410082, China.
ACS Appl Mater Interfaces. 2023 Feb 1;15(4):5487-5494. doi: 10.1021/acsami.2c20885. Epub 2023 Jan 18.
Organic-inorganic metal halides (OIMHs) have abundant optical properties and potential applications, such as light-emitting diodes, displays, solar cells, and photodetectors. Herein, we report zero-dimensional Mn-based OIMH (CHN)MnCl single crystals synthesized by a simple slow evaporation method, which exhibit intense green emission at 520 nm originating from T-A transition of Mn ions. Large organic cations in the crystal structure result in the isolated [MnCl] tetrahedrons, and the closest Mn-Mn distance reaches 9.07 Å, which effectively inhibits the migration of excitation energy between adjacent Mn emission centers, thus achieving a high quantum yield (∼87%) and a long photoluminescence (PL) lifetime (3.42 ms). The different optical and structural properties at low and high temperatures are revealed by temperature-dependent PL and X-ray diffraction spectra. The PL spectra and lifetimes under the heating and cooling processes indicate that the optical property transitions are reversible at 220/240 K. Our work provides a promising strategy for building multifunctional optoelectronic materials and insights into the understanding convertible photophysical properties from isomers of metal halides.
有机-无机金属卤化物(OIMHs)具有丰富的光学性质和潜在应用,如发光二极管、显示器、太阳能电池和光电探测器。在此,我们报告了通过简单的缓慢蒸发法合成的零维基于 Mn 的 OIMH(CHN)MnCl 单晶,其在 520nm 处呈现出源自 Mn 离子的 T-A 跃迁的强烈绿色发射。晶体结构中的大有机阳离子导致孤立的[MnCl]四面体,最近的 Mn-Mn 距离达到 9.07Å,这有效地抑制了相邻 Mn 发射中心之间激发能量的迁移,从而实现了高量子产率(约 87%)和长光致发光(PL)寿命(3.42ms)。低温和高温下的不同光学和结构性质通过温度依赖性 PL 和 X 射线衍射光谱揭示。加热和冷却过程中的 PL 光谱和寿命表明,在 220/240K 下光学性质的转变是可逆的。我们的工作为构建多功能光电材料提供了一种有前途的策略,并深入了解了金属卤化物异构体的可转换光物理性质。