Suppr超能文献

通过基于mRNA展示的机器学习模型评估环脱水酶LynD的底物范围

Assessing Substrate Scope of the Cyclodehydratase LynD by mRNA Display-Enabled Machine Learning Models.

作者信息

Steude Emma G, Dieckhaus Henry, Pelton Jarrett M, Ren Jie, Kuhlman Brian, Bowers Albert A

机构信息

Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.

Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.

出版信息

Biochemistry. 2025 Jul 1;64(13):2811-2822. doi: 10.1021/acs.biochem.4c00682. Epub 2025 Jun 10.

Abstract

Many members of the broad family of enzymes, known as YcaOs have been shown to install azoline heterocycles post-translationally into peptide substrates. These moieties can help rigidify structures and contribute to the potent bioactivities of the eventual natural products. Several of these enzymes exhibit particularly broad substrate promiscuity and may lend themselves to the synthesis and discovery of new azol(in)e containing peptide inhibitors or probes. Herein, we use mRNA display, a high throughput peptide display technology, to examine the substrate promiscuity of the prototypical YcaO cyclodehydratase, LynD. mRNA display enables assay of far larger libraries of LynD substrates than previously possible and elucidates several new trends in activity. Significantly, while all canonical amino acids are allowed in proximity to the residue undergoing modification, charged residues are disfavored, as are multiple, adjacent heterocyclizations. We use these data to construct a deep learning model for accurate prediction of substrate processing by LynD; this model can be used to predict and explain specific combinations of epistatic interactions that alter the LynD's ability to modify a given peptide. Comparison to similar data sets from structurally distinct classes of YcaOs elucidates the physical basis of changes in substrate scope and selectivity across these members of the YcaO enzyme family. We anticipate that the detailed understanding of the substrate scope and tolerance of these cyclodehydratases can enable their use in the modification of mRNA display libraries for selection of new inhibitors and therapeutics.

摘要

在被称为YcaOs的广泛酶家族中,许多成员已被证明能在翻译后将唑啉杂环安装到肽底物中。这些基团有助于使结构刚性化,并有助于最终天然产物的强大生物活性。其中几种酶表现出特别广泛的底物选择性,可能适用于合成和发现新的含唑啉的肽抑制剂或探针。在此,我们使用mRNA展示技术(一种高通量肽展示技术)来研究典型的YcaO环脱水酶LynD的底物选择性。mRNA展示技术能够检测比以前更大的LynD底物文库,并阐明了几个新的活性趋势。值得注意的是,虽然在进行修饰的残基附近允许所有标准氨基酸存在,但带电荷的残基不受欢迎,多个相邻的杂环化也是如此。我们利用这些数据构建了一个深度学习模型,用于准确预测LynD对底物的加工过程;该模型可用于预测和解释上位相互作用的特定组合,这些组合会改变LynD修饰给定肽的能力。与来自结构不同的YcaOs类别的类似数据集进行比较,阐明了YcaO酶家族这些成员底物范围和选择性变化的物理基础。我们预计,对这些环脱水酶的底物范围和耐受性的详细了解能够使其用于修饰mRNA展示文库,以筛选新的抑制剂和治疗药物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验