Suppr超能文献

芽殖酵母中组合性黏连蛋白亚基基因缺失的分析

Analysis of combinatorial cohesin subunit gene deletions in budding yeast.

作者信息

Duke Grace, Skibbens Robert V

机构信息

Department of Bioengineering, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA.

Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA.

出版信息

Genetics. 2025 Aug 6;230(4). doi: 10.1093/genetics/iyaf107.

Abstract

Throughout the cell cycle, DNA molecules convert between hierarchical intramolecular (cis) and intermolecular (trans) associations. Cohesin ATPase complexes produce both types of DNA associations which collectively are required for sister chromatid segregation, chromatin condensation, genomic architecture, gene transcription, and DNA repair. The mechanisms that regulate cohesin cis- and trans-activities, however, remain controversial. A popular model is that a regulatory complex (Pds5, Irr1/Scc3, and Rad61) sits atop a core ring-like complex (Mcd1/Scc1, Smc1, and Smc3), the latter of which exhibits the inherent ATPase activities responsible for producing cis- and trans-DNA conformations. Additional proteins transiently interact with cohesins to promote cohesin deposition onto DNA (Scc2 and Scc4) or stabilize cohesin-DNA binding (Eco1/Ctf7). Of these 9 components, only RAD61 is nonessential. Recent findings, however, identified pairs of suppressor mutations that support the viability of cells individually deleted for either PDS5 or ECO1/CTF7 (herein ECO1). Intriguingly, CLN2 deletion is common in both suppressor pairs, suggesting that combined suppressor mutations may support the viability of cells co-deleted for both ECO1 and PDS5. These results further suggest that the addition of other suppressor mutations (such as ELG1 and RAD61) may support the viability of cells deleted of all auxiliary subunits-including IRR1/SCC3 (herein SCC3). Here, we test these predictions and report on novel gene deletion combinations required for cell cycle progression and cell viability.

摘要

在整个细胞周期中,DNA分子在层次化的分子内(顺式)和分子间(反式)关联之间转换。黏连蛋白ATP酶复合物产生这两种类型的DNA关联,它们共同是姐妹染色单体分离、染色质凝聚、基因组结构、基因转录和DNA修复所必需的。然而,调节黏连蛋白顺式和反式活性的机制仍存在争议。一种流行的模型是,一个调节复合物(Pds5、Irr1/Scc3和Rad61)位于一个核心环状复合物(Mcd1/Scc1、Smc1和Smc3)之上,后者具有负责产生顺式和反式DNA构象的固有ATP酶活性。其他蛋白质与黏连蛋白短暂相互作用,以促进黏连蛋白在DNA上的沉积(Scc2和Scc4)或稳定黏连蛋白与DNA的结合(Eco1/Ctf7)。在这9个组分中,只有RAD61是非必需的。然而,最近的研究发现了成对的抑制突变,这些突变支持单独缺失PDS5或ECO1(本文中为ECO1)的细胞的生存能力。有趣的是,CLN2缺失在这两个抑制突变对中都很常见,这表明联合的抑制突变可能支持同时缺失ECO1和PDS5的细胞的生存能力。这些结果进一步表明,添加其他抑制突变(如ELG1和RAD61)可能支持缺失所有辅助亚基(包括IRR1/SCC3,本文中为SCC3)的细胞的生存能力。在这里,我们测试了这些预测,并报告了细胞周期进程和细胞生存能力所需的新的基因缺失组合。

相似文献

1
Analysis of combinatorial cohesin subunit gene deletions in budding yeast.
Genetics. 2025 Aug 6;230(4). doi: 10.1093/genetics/iyaf107.
4
S. cerevisiae Cells Can Grow without the Pds5 Cohesin Subunit.
mBio. 2022 Aug 30;13(4):e0142022. doi: 10.1128/mbio.01420-22. Epub 2022 Jun 16.
5
Building sister chromatid cohesion: smc3 acetylation counteracts an antiestablishment activity.
Mol Cell. 2009 Mar 27;33(6):763-74. doi: 10.1016/j.molcel.2009.02.028.
6
Cohesin without cohesion: a novel role for Pds5 in Saccharomyces cerevisiae.
PLoS One. 2014 Jun 25;9(6):e100470. doi: 10.1371/journal.pone.0100470. eCollection 2014.
7
Epitope tag-induced synthetic lethality between cohesin subunits and Ctf7/Eco1 acetyltransferase.
FEBS Lett. 2010 Sep 24;584(18):4037-40. doi: 10.1016/j.febslet.2010.08.020. Epub 2010 Aug 20.
8
Cohesin rings devoid of Scc3 and Pds5 maintain their stable association with the DNA.
PLoS Genet. 2012;8(8):e1002856. doi: 10.1371/journal.pgen.1002856. Epub 2012 Aug 9.
9
The acetyltransferase Eco1 elicits cohesin dimerization during S phase.
J Biol Chem. 2020 May 29;295(22):7554-7565. doi: 10.1074/jbc.RA120.013102. Epub 2020 Apr 20.
10
The Drosophila cohesin subunit Rad21 is a trithorax group (trxG) protein.
Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12405-10. doi: 10.1073/pnas.0801698105. Epub 2008 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验