Suppr超能文献

化学梯度中基于脲酶的纳米马达的集体动力学

Collective Dynamics of Urease-Based Nanomotors in a Chemical Gradient.

作者信息

Lin Jinwei, Chen Shuqin, Lezcano Florencia, Li Zhengshang, Xu Leilei, Guan Jianguo, Sánchez Samuel

机构信息

Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 10-12, Barcelona, 08028, Spain.

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.

出版信息

Small. 2025 Aug;21(31):e2502212. doi: 10.1002/smll.202502212. Epub 2025 Jun 10.

Abstract

Gradients are widespread in nature, including within the human body, making the study of nanomotors' collective dynamics in gradients crucial to advancing biomedical applications and deepening the understanding of natural active matters. However, the comprehensive understanding of nanomotors' collective dynamics under gradients remains underexplored, particularly. This study employs urease-based nanomotors (UrNMs) as a model system to explore their collective dynamics within a urea gradient, revealing three fundamental principles that govern their behavior: density-driven convection, UrNMs' response to the urea gradient, and a coupling effect between UrNMs and their environment. Initially, migration is dominated by convection-induced motion arising from the steep gradient. As convection gradually diminishes, UrNMs' positive response to the urea gradient becomes the dominant factor governing their migration. Notably, the coupling effect between nanomotors and the gel, plays a crucial role in the migration process. This coupling effect arises from hydrogen bonding between product anions and the gel, which generates ionic gradients. The dominant influence of electric force is validated by pH-controlled experiments. These insights advance the fundamental understanding of gradient-responsive nanomotor behavior and offer inspiration for the design of intelligent, environment-sensitive active systems.

摘要

梯度在自然界中广泛存在,包括在人体内部,这使得研究纳米马达在梯度中的集体动力学对于推进生物医学应用和深化对天然活性物质的理解至关重要。然而,对梯度下纳米马达集体动力学的全面理解仍未得到充分探索。本研究采用基于脲酶的纳米马达(UrNMs)作为模型系统,以探索它们在尿素梯度中的集体动力学,揭示了支配其行为的三个基本原理:密度驱动对流、UrNMs对尿素梯度的响应以及UrNMs与其环境之间的耦合效应。最初,迁移主要由陡峭梯度引起的对流诱导运动主导。随着对流逐渐减弱,UrNMs对尿素梯度的正向响应成为支配其迁移的主导因素。值得注意的是,纳米马达与凝胶之间的耦合效应在迁移过程中起着关键作用。这种耦合效应源于产物阴离子与凝胶之间的氢键,从而产生离子梯度。通过pH控制实验验证了电力的主导影响。这些见解推进了对梯度响应纳米马达行为的基本理解,并为智能、环境敏感活性系统的设计提供了灵感。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1955/12332813/b8b571f378c3/SMLL-21-2502212-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验