Suppr超能文献

利用机器学习评估血清血小板生成素以增强对免疫性血小板减少症、再生障碍性贫血和骨髓增生异常综合征的诊断:一项回顾性队列研究。

Assessing serum thrombopoietin for enhanced diagnosis of ITP, AA, and MDS using machine learning: A retrospective cohort study.

作者信息

Zhu Guoqing, Ren Yansong, Wang Lele, Wang Shoulei, Wang Yansheng, Fan Yulong, Huang Lunhui, Xia Yonghui, Fang Liwei

机构信息

State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.

Tianjin Institutes of Health Science, Tianjin, China.

出版信息

Ann Hematol. 2025 Jun 10. doi: 10.1007/s00277-025-06308-y.

Abstract

Differentiating between immune thrombocytopenia (ITP), aplastic anemia (AA), and myelodysplastic syndromes (MDS) is critical due to the distinct treatment approaches required for each condition. This study investigates the role of serum thrombopoietin (TPO) levels as a potential biomarker to aid in the diagnosis of these hematological disorders. This retrospective cohort study analyzed serum TPO levels in patients diagnosed with ITP, AA, and MDS, using clinical records and stored serum samples collected from patients treated between September 2023 and May 2024. Statistical analyses were performed to determine cut-off values for TPO levels that effectively differentiate between these conditions. Additionally, machine learning models were utilized to enhance diagnostic accuracy based on clinical indicators, including TPO levels. Serum TPO levels were markedly elevated in AA (1369.19 ± 751.26 pg/ml) compared to ITP (263.57 ± 355.91 pg/ml), MDS (434.55 ± 551.56 pg/ml), and health control (71.64 ± 30.32 pg/ml) (P < 0.0001). Correlation analysis revealed a significant positive correlation between TPO levels and ITP, AA, and MDS (P < 0.0001), Linear regression analysis indicated that age was a significant predictor of TPO levels (P < 0.0001). The optimal cut-off value for TPO levels distinguishing ITP from AA was 302.43 pg/mL, yielding an AUC of 0.925 (sensitivity with 80.75%, specificity with 94.06%). Machine learning models demonstrated that Logistic Regression, XGBoost, and LightGBM performed best, with the Logistic Regression achieving an accuracy of 86.3% and an AUC of 0.910. Serum TPO levels are a promising non-invasive biomarker for distinguishing between ITP, AA, and MDS. Incorporating TPO measurements into clinical practice may enhance diagnostic accuracy and improve patient management strategies.

摘要

由于每种病症所需的治疗方法不同,因此区分免疫性血小板减少症(ITP)、再生障碍性贫血(AA)和骨髓增生异常综合征(MDS)至关重要。本研究调查血清血小板生成素(TPO)水平作为潜在生物标志物在这些血液系统疾病诊断中的作用。这项回顾性队列研究利用2023年9月至2024年5月期间接受治疗患者的临床记录和储存的血清样本,分析了诊断为ITP、AA和MDS患者的血清TPO水平。进行统计分析以确定能有效区分这些病症的TPO水平临界值。此外,利用机器学习模型基于包括TPO水平在内的临床指标提高诊断准确性。与ITP(263.57±355.91 pg/ml)、MDS(434.55±551.56 pg/ml)和健康对照(71.64±30.32 pg/ml)相比,AA患者的血清TPO水平显著升高(1369.19±751.26 pg/ml)(P<0.0001)。相关性分析显示TPO水平与ITP、AA和MDS之间存在显著正相关(P<0.0001),线性回归分析表明年龄是TPO水平的显著预测因素(P<0.0001)。区分ITP与AA的TPO水平最佳临界值为302.43 pg/mL,曲线下面积(AUC)为0.925(灵敏度为80.75%,特异性为94.06%)。机器学习模型表明逻辑回归、XGBoost和LightGBM表现最佳,逻辑回归的准确率为86.3%,AUC为0.910。血清TPO水平是区分ITP、AA和MDS的一种有前景的非侵入性生物标志物。将TPO检测纳入临床实践可能会提高诊断准确性并改善患者管理策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验