Wang Jing, Min Hewei, Li Tao, Li Jiaheng, Jiang Yang, Zhang Jingbo, Wu Yibo, Sun Xinying
School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China, 86 13691212050.
Department of Gynaecology and Obstetrics, The Fourth Central Hospital of Baoding City, Hebei, China.
J Med Internet Res. 2025 Jun 10;27:e67303. doi: 10.2196/67303.
BACKGROUND: Over 96% of adult women face health issues, with 70% experiencing conditions like infections. Mobile health education is increasingly popular but faces challenges in personalization and readability. Artificial intelligence (AI) chatbots provide tailored support, and a discrete choice experiment can help in understanding user preferences to improve chatbot design. OBJECTIVE: This study aims at exploring the preferences of women toward AI chatbots to improve health education communication and user experience. METHODS: A discrete choice experiment was conducted, identifying 6 main attributes of AI chatbots: response accuracy, legibility, service cost, background information collection, information utility, and content provision. A total of 957 female participants from a hospital in Hebei Province participated, choosing between 2 hypothetical chatbots or opting for neither (a no-choice option). The conditional logit model was used to estimate user preferences. RESULTS: A total of 957 participants were included in the analysis. The results showed that participants preferred a chatbot with 100% response accuracy (β=0.940, P<.001; 95% CI 0.624 to 1.255), very easy to understand information (β=0.907, P<.001; 95% CI 0.634 to 1.180), a service fee of CN ¥0/month (β=-0.095, P<.001; 95% CI -0.108 to -0.082; a currency exchange rate of US $1=CN ¥7.09 was applicable), practical information utility (β=1.085, P<.001; 95% CI 0.832 to 1.338), and provision of disease-related knowledge (β=0.752, P<.001; 95% CI 0.485 to 1.018). Whether or not to allow the collection of background information (only question and answer information) has no significant impact on women's choice preferences. Additionally, participants were willing to pay an additional CN ¥9.916 (95% CI 6.843 to 12.292) for 100% response accuracy, CN ¥9.567 (95% CI 6.843 to 12.292) for "very easy to understand" information, and CN ¥11.451 (95% CI 8.704 to 14.198) for the "very practical" information utility. Additionally, they were willing to pay CN ¥7.931 (95% CI 4.975 to 10.886) for "knowledge of diseases" compared to "gender knowledge" (CN ¥2.602, 95% CI -0.551 to 5.756). The relative importance of the chatbot attributes indicated that information utility (1.085/3.858, 28.12%) and response accuracy (0.940/3.858, 24.37%) were the most influential factors in participants' preferences. CONCLUSIONS: AI chatbots designed for female users should focus on high response accuracy, clear content, free access, privacy protection, practical information, and disease knowledge to attract users and enhance health education.
背景:超过96%的成年女性面临健康问题,其中70%患有感染等疾病。移动健康教育越来越受欢迎,但在个性化和可读性方面面临挑战。人工智能(AI)聊天机器人提供量身定制的支持,离散选择实验有助于了解用户偏好以改进聊天机器人设计。 目的:本研究旨在探索女性对人工智能聊天机器人的偏好,以改善健康教育沟通和用户体验。 方法:进行了一项离散选择实验,确定了人工智能聊天机器人的6个主要属性:回答准确性、易读性、服务成本、背景信息收集、信息实用性和内容提供。来自河北省一家医院的957名女性参与者参与其中,在两个假设的聊天机器人之间进行选择,或选择都不选(无选择选项)。使用条件logit模型估计用户偏好。 结果:共有957名参与者纳入分析。结果显示,参与者更喜欢回答准确率为100%的聊天机器人(β=0.940,P<0.001;95%CI为0.624至1.255)、信息非常容易理解的聊天机器人(β=0.907,P<0.001;95%CI为0.634至1.180)、每月服务费为0元人民币的聊天机器人(β=-0.095,P<0.001;95%CI为-0.108至-0.082;适用汇率为1美元=7.09元人民币)、实用的信息实用性(β=1.085,P<0.001;95%CI为0.832至1.338)以及提供疾病相关知识的聊天机器人(β=0.752,P<0.001;95%CI为0.485至1.018)。是否允许收集背景信息(仅问答信息)对女性的选择偏好没有显著影响。此外,参与者愿意为100%的回答准确率额外支付9.916元人民币(95%CI为6.843至12.292),为“非常容易理解”的信息额外支付9.567元人民币(95%CI为6.843至12.292),为“非常实用”的信息实用性额外支付11.451元人民币(95%CI为8.704至14.198)。与“性别知识”(2.602元人民币,95%CI为-0.551至5.756)相比,她们愿意为“疾病知识”支付7.931元人民币(95%CI为4.975至10.886)。聊天机器人属性的相对重要性表明,信息实用性(1.085/3.85,28.12%)和回答准确性(0.9 /3.858,24.37%)是影响参与者偏好的最主要因素。 结论:为女性用户设计的人工智能聊天机器人应注重高回答准确率、清晰的内容、免费访问、隐私保护、实用信息和疾病知识,以吸引用户并加强健康教育。
J Med Internet Res. 2025-6-10
Cochrane Database Syst Rev. 2025-6-19
Cochrane Database Syst Rev. 2008-10-8
Cochrane Database Syst Rev. 2025-6-9
Cochrane Database Syst Rev. 2022-6-15
Healthcare (Basel). 2024-2-23
J Med Internet Res. 2023-12-19
Eur J Cardiovasc Nurs. 2024-3-12
JAMA Ophthalmol. 2023-9-1
Clin Chem Lab Med. 2023-7-31
J Public Health Manag Pract.
Semin Cancer Biol. 2023-10
J Med Internet Res. 2023-6-28