Salleh Mohd Zulkifli
Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia.
J Infect Public Health. 2025 Sep;18(9):102871. doi: 10.1016/j.jiph.2025.102871. Epub 2025 Jun 6.
Cefiderocol represents a significant advancement in the treatment of multidrug-resistant Gram-negative bacterial infections. Its unique uptake mechanism, leveraging bacterial iron transport pathways for membrane permeation, sets it apart from conventional β-lactam antibiotics. Through its siderophore-mediated drug uptake, cefiderocol efficiently bypasses outer membrane barriers, allowing it to target and penetrate resistant pathogens, including those resistant to carbapenems and other antibiotics. This distinct property positions cefiderocol as a promising therapeutic option for infections caused by Pseudomonas aeruginosa, Acinetobacter baumannii, and Enterobacterales. Despite its promise, resistance to cefiderocol is emerging, driven by mutations in penicillin-binding proteins, impaired siderophore transporter systems, and β-lactamase production. These mechanisms disrupt antibiotic binding, compromise iron transport, and enzymatically inactivate cefiderocol, respectively, limiting its efficacy. This review examines cefiderocol's innovative mode of entry, therapeutic potential, and the challenges posed by resistance, offering insights into its role in the fight against multidrug-resistant pathogens.
头孢地尔在耐多药革兰氏阴性菌感染的治疗方面代表了一项重大进展。其独特的摄取机制利用细菌铁转运途径实现膜渗透,使其有别于传统的β-内酰胺类抗生素。通过其铁载体介导的药物摄取,头孢地尔有效地绕过外膜屏障,使其能够靶向并穿透耐药病原体,包括对碳青霉烯类和其他抗生素耐药的病原体。这一独特特性使头孢地尔成为治疗由铜绿假单胞菌、鲍曼不动杆菌和肠杆菌科细菌引起的感染的一种有前景的治疗选择。尽管前景广阔,但由于青霉素结合蛋白的突变、铁载体转运系统受损以及β-内酰胺酶的产生导致对头孢地尔的耐药性正在出现。这些机制分别破坏抗生素结合、损害铁转运并使头孢地尔酶促失活,限制了其疗效。本综述探讨了头孢地尔的创新进入模式、治疗潜力以及耐药性带来的挑战,为其在对抗耐多药病原体中的作用提供了见解。