Suppr超能文献

源到传感器耦合(SoSeC)作为一种从脑电图(EEG)和脑磁图(MEG)数据中定位相互作用源的有效工具。

Source to sensor coupling (SoSeC) as an effective tool to localize interacting sources from EEG and MEG data.

作者信息

Göschl Florian, Kaziki Dionysia, Leicht Gregor, Engel Andreas K, Nolte Guido

机构信息

Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

出版信息

J Neurosci Methods. 2025 Oct;422:110494. doi: 10.1016/j.jneumeth.2025.110494. Epub 2025 Jun 8.

Abstract

BACKGROUND

A standard approach to estimate interacting sources from EEG or MEG data is to first calculate a coupling between all pairs of voxels on a predefined grid within the brain and then average or maximize this coupling matrix along each column or row. Depending on the chosen coupling measure and grid size this approach can be computationally very costly, in particular when a bias is supposed to be removed.

NEW METHOD

We here suggest to replace this approach by a maximization of coupling between each source and the signal in sensor space. The idea is that any neuronal activity which can be estimated from recorded data must be present in sensor space in the first place. Using the imaginary part of coherency as coupling measure makes sure that we do not confuse this source to sensor coupling with a coupling of a source to itself. The presentation of this specific method is augmented with a discussion of conceptual issues for various forms of vector beamformers and eLoreta.

RESULTS

We found in simulations and empirical EEG data that the method is capable to robustly detect coupled sources.

COMPARISON WITH EXISTING METHODS

We found that the approach is hundreds of times faster than comparable conventional approaches. Results for EEG resting state data indicate that the new approach has also more statistical power than conventional approaches.

CONCLUSION

The new approach is an effective tool to identify interacting sources from cross-spectra of EEG and MEG data.

摘要

背景

从脑电图(EEG)或脑磁图(MEG)数据估计相互作用源的标准方法是,首先计算大脑内预定义网格上所有体素对之间的耦合,然后沿每列或每行对该耦合矩阵求平均或最大化。根据所选的耦合度量和网格大小,这种方法在计算上可能非常昂贵,尤其是在需要消除偏差时。

新方法

我们在此建议用最大化每个源与传感器空间中信号之间的耦合来取代这种方法。其理念是,任何可从记录数据中估计出的神经元活动首先必须存在于传感器空间中。使用相干性的虚部作为耦合度量可确保我们不会将这种源到传感器的耦合与源自身的耦合相混淆。通过讨论各种形式的矢量波束形成器和eLoreta的概念问题,对这种特定方法进行了详细阐述。

结果

我们在模拟和实际EEG数据中发现,该方法能够可靠地检测出耦合源。

与现有方法的比较

我们发现该方法比类似的传统方法快数百倍。EEG静息态数据的结果表明,新方法比传统方法具有更强的统计效力。

结论

新方法是从EEG和MEG数据的互谱中识别相互作用源的有效工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验