Huang Helai, Sun Mingze, Chen Kai, Che Yizhen, Tang Xin, Li Zhengwen, Nie Kaiqi, Qian Shuairen, Fang Jinjie, Wang Haiyong, Wu Yanfen, Hu Qikun, Wang Yuqi, Sun Xiaohang, He Junliang, Zhang Yu-Xiao, Zhuang Zhongbin, Zhang Liang, Niu Zhiqiang
State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P.R. China.
Center for Combustion Energy, School of Vehicle and Mobility, State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, 100084, P.R. China.
Angew Chem Int Ed Engl. 2025 Aug 11;64(33):e202511844. doi: 10.1002/anie.202511844. Epub 2025 Jun 22.
Electrochemical synthesis of HO by two-electron oxygen reduction (2e ORR) often shows limited stability at high current densities in acidic media. Mn-based catalysts have been demonstrated highly stable for four-electron ORR thanks to their intrinsically low rate constant for Fenton-like reactions. However, their activity toward acidic 2e ORR remains low because of too strong adsorption to *OOH. Here, we report a diatomic Mn catalyst with high-spin Mn centers to enable high onset potential (0.69 V), high selectivity (>90%), and outstanding stability (240 h under 300 mA cm) toward HO electrosynthesis in acid. Theoretical calculations and in situ spectroscopies reveal that the diatomic Mn sites have downshifted d-band center and thus weakened adsorption strength for *OOH. Moreover, the inertia of the Mn sites toward the troublesome Fenton-like reactions leads to the long-term stability at high current densities. We further demonstrate the functionalization of waste polyethylene (PE) using the high-concentration HO as produced, which provides a sustainable route toward on-site upcycling of plastic waste.
通过双电子氧还原(2e ORR)电化学合成过氧化氢(HO)在酸性介质中高电流密度下通常表现出有限的稳定性。锰基催化剂由于其类芬顿反应的本征低速率常数,已被证明对四电子ORR具有高度稳定性。然而,由于对OOH的吸附过强,它们对酸性2e ORR的活性仍然较低。在此,我们报道了一种具有高自旋锰中心的双原子锰催化剂,其在酸性条件下对HO电合成具有高起始电位(0.69 V)、高选择性(>90%)和出色的稳定性(在300 mA cm下240小时)。理论计算和原位光谱表明,双原子锰位点的d带中心下移,从而削弱了对OOH的吸附强度。此外,锰位点对麻烦的类芬顿反应的惰性导致了在高电流密度下的长期稳定性。我们进一步展示了使用所产生的高浓度HO对废弃聚乙烯(PE)进行功能化处理,这为塑料废物的现场升级再造提供了一条可持续途径。