Suppr超能文献

通过精心构建用于燃料电池的铁 - 锰双原子同时提高氧还原反应催化剂的活性和稳定性

Concurrently Boosting Activity and Stability of Oxygen Reduction Reaction Catalysts via Judiciously Crafting Fe-Mn Dual Atoms for Fuel Cells.

作者信息

Zhang Lei, Dong Yuchen, Li Lubing, Shi Yuchuan, Zhang Yan, Wei Liting, Dong Chung-Li, Lin Zhiqun, Su Jinzhan

机构信息

International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.

Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore, 117585, Singapore.

出版信息

Nanomicro Lett. 2024 Dec 16;17(1):88. doi: 10.1007/s40820-024-01580-5.

Abstract

The ability to unlock the interplay between the activity and stability of oxygen reduction reaction (ORR) represents an important endeavor toward creating robust ORR catalysts for efficient fuel cells. Herein, we report an effective strategy to concurrent enhance the activity and stability of ORR catalysts via constructing atomically dispersed Fe-Mn dual-metal sites on N-doped carbon (denoted (FeMn-DA)-N-C) for both anion-exchange membrane fuel cells (AEMFC) and proton exchange membrane fuel cells (PEMFC). The (FeMn-DA)-N-C catalysts possess ample dual-metal atoms consisting of adjacent Fe-N and Mn-N sites on the carbon surface, yielded via a facile doping-adsorption-pyrolysis route. The introduction of Mn carries several advantageous attributes: increasing the number of active sites, effectively anchoring Fe due to effective electron transfer to Mn (revealed by X-ray absorption spectroscopy and density-functional theory (DFT), thus preventing the aggregation of Fe), and effectively circumventing the occurrence of Fenton reaction, thus reducing the consumption of Fe. The (FeMn-DA)-N-C catalysts showcase half-wave potentials of 0.92 and 0.82 V in 0.1 M KOH and 0.1 M HClO, respectively, as well as outstanding stability. As manifested by DFT calculations, the introduction of Mn affects the electronic structure of Fe, down-shifts the d-band Fe active center, accelerates the desorption of OH groups, and creates higher limiting potentials. The AEMFC and PEMFC with (FeMn-DA)-N-C as the cathode catalyst display high power densities of 1060 and 746 mW cm, respectively, underscoring their promising potential for practical applications. Our study highlights the robustness of designing Fe-containing dual-atom ORR catalysts to promote both activity and stability for energy conversion and storage materials and devices.

摘要

揭示氧还原反应(ORR)活性与稳定性之间的相互作用,对于开发用于高效燃料电池的稳定ORR催化剂至关重要。在此,我们报道了一种有效的策略,通过在氮掺杂碳上构建原子分散的铁-锰双金属位点(表示为(FeMn-DA)-N-C),同时提高ORR催化剂的活性和稳定性,用于阴离子交换膜燃料电池(AEMFC)和质子交换膜燃料电池(PEMFC)。(FeMn-DA)-N-C催化剂在碳表面具有由相邻的Fe-N和Mn-N位点组成的丰富双金属原子,通过简便的掺杂-吸附-热解路线制备而成。锰的引入具有几个有利特性:增加活性位点数量,由于向锰的有效电子转移而有效锚定铁(X射线吸收光谱和密度泛函理论(DFT)表明),从而防止铁的聚集,并有效避免芬顿反应的发生,从而减少铁的消耗。(FeMn-DA)-N-C催化剂在0.1 M KOH和0.1 M HClO中分别显示出0.92 V和0.82 V的半波电位,以及出色的稳定性。DFT计算表明,锰的引入影响了铁的电子结构,使d带铁活性中心下移,加速了OH基团的脱附,并产生了更高的极限电位。以(FeMn-DA)-N-C作为阴极催化剂的AEMFC和PEMFC分别显示出1060和746 mW cm的高功率密度,突出了它们在实际应用中的潜力。我们的研究强调了设计含铁双原子ORR催化剂以提高能量转换和存储材料及器件的活性和稳定性的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dfe/11646968/4611ae48e5e4/40820_2024_1580_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验