Suppr超能文献

微流控设备制造中的表面粗糙度:传统方法的局限性及多材料键合的新解决方案

Surface roughness in microfluidic device fabrication: limitations of conventional methods and a novel solution for multi-material bonding.

作者信息

Lehmann Christoph, Singh Deoraj, Gastearena Maria, Comella Laura M

机构信息

Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg Freiburg Germany

Laboratory for the Design of Microsystems, Department of Microsystems Engineering, University of Freiburg Freiburg Germany.

出版信息

RSC Adv. 2025 Jun 10;15(24):19254-19262. doi: 10.1039/d5ra02701b. eCollection 2025 Jun 4.

Abstract

Microfluidic devices, especially those utilizing polydimethylsiloxane (PDMS) structures, require reliable bonding methods to achieve durable, leak-proof seals. Current bonding techniques, including O plasma treatment, suffer from limitations related to material compatibility and surface roughness sensitivity, which compromise device stability and scalability in complex designs. In this study, we investigate the impact of surface roughness, wax contamination, and the presence of conductive materials on bonding strength in PDMS-based microfluidics. Additionally, we propose a novel bonding method using a flowable, one-component silicone rubber that forms robust seals without plasma treatment or silanization, effectively overcoming the challenges posed by increased surface roughness and material heterogeneity. The bonding method demonstrated significantly enhanced bond strengths across various substrate combinations (PDMS, copper, and FR4), with notable resilience under high pressure. This approach advances microfluidic fabrication by offering a scalable, versatile solution for multi-material bonding applicable in digital microfluidics and beyond.

摘要

微流控设备,尤其是那些采用聚二甲基硅氧烷(PDMS)结构的设备,需要可靠的键合方法来实现持久、防漏的密封。当前的键合技术,包括氧等离子体处理,存在与材料兼容性和表面粗糙度敏感性相关的局限性,这在复杂设计中会损害设备的稳定性和可扩展性。在本研究中,我们研究了表面粗糙度、蜡污染以及导电材料的存在对基于PDMS的微流控中键合强度的影响。此外,我们提出了一种新颖的键合方法,使用一种可流动的单组分硅橡胶,无需等离子体处理或硅烷化即可形成坚固的密封,有效克服了表面粗糙度增加和材料异质性带来的挑战。该键合方法在各种基板组合(PDMS、铜和FR4)上均表现出显著增强的键合强度,在高压下具有显著的弹性。这种方法通过为数字微流控及其他领域的多材料键合提供一种可扩展、通用的解决方案,推动了微流控制造的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验