Suppr超能文献

非线性现象使动物叫声令人类听众感到惊恐。

Nonlinear phenomena make animal calls alarming for human listeners.

作者信息

Terrade Anna, Massenet Mathilde, Pernel Lise, Mathevon Nicolas, Anikin Andrey, Reby David

机构信息

ENES Bioacoustics Research Lab, CRNL, University of Saint-Etienne, CNRS, Inserm, Saint-Etienne, France.

Direction technologies innovation et projets groupe, SNCF, Saint-Denis, France.

出版信息

iScience. 2025 May 7;28(6):112600. doi: 10.1016/j.isci.2025.112600. eCollection 2025 Jun 20.

Abstract

Animal vocalizations are extremely diverse, and evolutionary approaches to understanding this diversity assume some mapping between their acoustic form and communicative function, with specific features serving universal roles. Here, we investigate whether irregular vocal production with nonlinear phenomena contributes to the alarming quality of vertebrate calls. We resynthesized 98 calls of birds and mammals from 18 species, adding frequency jumps, subharmonics, amplitude modulation, or chaos. Human listeners then rated how alarming they found these calls in an immersive setting mimicking a forest at night. Chaos consistently made the calls more alarming, but other tested NLP did not, confirming that chaos is particularly suitable both for signaling alarm and, potentially, for intimidation in agonistic interactions. While our results suggest that nonlinear phenomena may have a broader function in the mammalian vocal repertoire, follow-up studies should now investigate whether these perceptual effects induced by nonlinear phenomena extend to receivers in non-human species.

摘要

动物的发声极其多样,而理解这种多样性的进化方法假定其声学形式与交流功能之间存在某种映射关系,特定特征发挥着普遍作用。在此,我们研究具有非线性现象的不规则发声是否有助于脊椎动物叫声的警报特性。我们重新合成了来自18个物种的98种鸟类和哺乳动物的叫声,添加了频率跳跃、次谐波、振幅调制或混沌现象。然后,人类听众在模拟夜间森林的沉浸式环境中对这些叫声的警报程度进行评分。混沌现象始终使叫声更具警报性,但其他测试的非线性现象则不然,这证实了混沌现象特别适合于发出警报信号,并且可能适用于在争斗互动中进行威慑。虽然我们的结果表明非线性现象可能在哺乳动物的发声库中具有更广泛的功能,但后续研究现在应该调查这些由非线性现象引起的感知效应是否也适用于非人类物种的接收者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ede/12150040/bd30eae9a66c/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验