Hurvitz Noa, Lehman Hillel, Hershkovitz Yoav, Kolben Yotam, Jamil Khurram, Agus Samuel, Berg Marc, Aamar Suhail, Ilan Yaron
Department of Medicine, Hadassah Medical Center, Faculty of Medicine, Hebrew University, Jerusalem, Israel.
Oberon Sciences and Area 9 Innovation, Coppnehagen, Denmark.
J Public Health Res. 2025 Jun 9;14(2):22799036251337640. doi: 10.1177/22799036251337640. eCollection 2025 Apr.
INTRODUCTION: Adhering to treatment plans can be challenging for medical cannabis patients. According to the constrained-disorder principle (CDP), biological systems are defined by their degree of variability. CDP-based second-generation artificial intelligence (AI) systems use personalized variability signatures to improve chronic medication response. AIM: We retrospectively analyzed real-world data regarding chronic pain patients using the second generation of artificial intelligence systems to improve adherence to medical cannabis and increase its effectiveness. DESIGN AND METHODS: A retrospective analysis of real-world data of 27 patients using prescribed medical cannabis for chronic pain was conducted. Patients received treatment according to a regimen provided by the CDP-based second-generation AI Altus Care™ app that managed the product's dosage and administration times. The app offers a therapeutic regimen by varying dosages and administration times within predefined ranges. We included 16 patients who participated for more than a week. We assessed adherence to therapy and clinical response in real life based on pain scale measurements. RESULTS: The patients were followed up for 64 days (30-189). Second-generation, AI-based, personalized regimens had a high engagement rate and adherence. 50% of patients showed a high compliance rate. Chronic pain improved in patients who reported their pain score. SUMMARY: This preliminary real-world data analysis suggests that an algorithm-based approach using a second-generation AI system may enhance the adherence to and clinical effectiveness of medical cannabis. These findings require confirmation through prospective controlled studies.
引言:对于医用大麻患者而言,坚持治疗方案可能具有挑战性。根据受限-紊乱原则(CDP),生物系统由其变异性程度来定义。基于CDP的第二代人工智能(AI)系统使用个性化变异性特征来改善慢性药物治疗反应。 目的:我们使用第二代人工智能系统对慢性疼痛患者的真实世界数据进行回顾性分析,以提高对医用大麻的依从性并增强其疗效。 设计与方法:对27名使用处方医用大麻治疗慢性疼痛的患者的真实世界数据进行回顾性分析。患者根据基于CDP的第二代AI Altus Care™应用程序提供的方案接受治疗,该应用程序管理产品的剂量和给药时间。该应用程序通过在预定义范围内改变剂量和给药时间来提供治疗方案。我们纳入了16名参与超过一周的患者。我们根据疼痛量表测量评估现实生活中的治疗依从性和临床反应。 结果:患者随访了64天(30 - 189天)。基于第二代AI的个性化方案具有较高的参与率和依从性。50%的患者显示出高依从率。报告疼痛评分的患者慢性疼痛有所改善。 总结:这项初步的真实世界数据分析表明,使用第二代AI系统的基于算法的方法可能会提高医用大麻的依从性和临床疗效。这些发现需要通过前瞻性对照研究来证实。
Front Med (Lausanne). 2022-1-24
Front Netw Physiol. 2024-12-18
Brain Sci. 2024-2-23
Int J Mol Sci. 2024-2-26