David Laure C, Grégoire Mathilde, Berquin Patrick, Marmagne Anne, Dalmais Marion, Bendahmane Abdelhafid, Miller Tony J, Krapp Anne, Daniel-Vedele Françoise, Girin Thomas, Ferrario-Méry Sylvie
Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin-Sciences du Végétal (IJPB), Versailles, France Versailles France.
Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2) Gif sur Yvette France.
Plant Direct. 2025 Jun 10;9(6):e70075. doi: 10.1002/pld3.70075. eCollection 2025 Jun.
An efficient nitrate uptake system contributes to the improvement of crop nitrogen use efficiency under low nitrogen availability. The High Affinity nitrate Transport System (HATS) in plants is active in low range of external nitrate and is mediated by a two-component system (high affinity transporters NRT2 associated to a partner protein NRT3 (NAR2)). In Brachypodium, the model plant for C3 cereals, we investigated the role of and through various experimental approaches. Expression profile of and genes in response to nitrate availability fits perfectly with the characteristics of the HATS components. Nitrate influx measurements decreased in mutants (one NaN induced mutant with a truncated NRT2A protein and two amiRNA mutants). In addition, the N limited phenotype of the mutant with a truncated NRT2A protein confirmed that BdNRT2A is a major contributor of the HATS in Brachypodium. An effective nitrate transport in the heterologous expression system Xenopus oocytes required the coexpression of and that characterizes two-component system of the HATS. Functional interaction between BdNRT2A-GFP and BdNRT3.2-RFP fusion proteins was observed at the plasma membrane in Arabidopsis protoplasts in transient expression experiments with BdNRT3.2 being necessary for the plasma membrane localization of BdNRT2A. The role of a conserved Ser residue in BdNRT2A (S461) specific to monocotyledons was evaluated in the BdNRT2A and BdNRT3.2 interaction leading to plasma membrane targeting. Assuming that S461 could be regulated by phosphorylation, a directed mutagenesis was performed to mimic a nonphosphorylated (S461A) or a constitutively phosphorylated (S461D), However, the mimicking the phosphorylation status of S461 by mutagenesis did not modify the BdNRT2A and BdNRT3.2 interaction, suggesting a more complex regulating mechanism. In conclusion, our data show that BdNRT2A and BdNRT3.2 are the main components of the nitrate HATS activity in Brachypodium (Bd21-3) and allow an optimal growth in low N conditions.
一个高效的硝酸盐吸收系统有助于在低氮供应条件下提高作物的氮利用效率。植物中的高亲和力硝酸盐转运系统(HATS)在外部硝酸盐浓度较低时起作用,由一个双组分系统介导(高亲和力转运蛋白NRT2与伴侣蛋白NRT3(NAR2)相关联)。在C3谷类作物的模式植物短柄草中,我们通过各种实验方法研究了NRT2和NRT3的作用。NRT2和NRT3基因对硝酸盐供应的表达谱与HATS组分的特征完美契合。在NRT2突变体(一个NaN诱导的具有截短NRT2A蛋白的突变体和两个amiRNA突变体)中,硝酸盐流入量测量值下降。此外,具有截短NRT2A蛋白的突变体的氮限制表型证实,BdNRT2A是短柄草中HATS的主要贡献者。在非洲爪蟾卵母细胞异源表达系统中,有效的硝酸盐转运需要NRT2和NRT3的共表达,这是HATS双组分系统的特征。在拟南芥原生质体的瞬时表达实验中,在质膜上观察到BdNRT2A-GFP和BdNRT3.2-RFP融合蛋白之间的功能相互作用,其中BdNRT3.2是BdNRT2A质膜定位所必需的。在导致质膜靶向的BdNRT2A和BdNRT3.2相互作用中,评估了单子叶植物特有的BdNRT2A中一个保守丝氨酸残基(S461)的作用。假设S461可以被磷酸化调节,进行定向诱变以模拟非磷酸化(S461A)或组成型磷酸化(S461D),然而,通过诱变模拟S461的磷酸化状态并没有改变BdNRT2A和BdNRT3.2的相互作用,这表明存在更复杂的调节机制。总之,我们的数据表明,BdNRT2A和BdNRT3.2是短柄草(Bd21-3)中硝酸盐HATS活性的主要成分,并能在低氮条件下实现最佳生长。