Suppr超能文献

甘蔗(Saccharum spp.)的根硝酸盐摄取受 NRT2.1/NRT3.1 运输系统的转录和可能的转录后调控调节。

Root nitrate uptake in sugarcane (Saccharum spp.) is modulated by transcriptional and presumably posttranscriptional regulation of the NRT2.1/NRT3.1 transport system.

机构信息

Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário, 303, CP 96, Piracicaba, SP, 13400-970, Brazil.

Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil.

出版信息

Mol Genet Genomics. 2022 Sep;297(5):1403-1421. doi: 10.1007/s00438-022-01929-8. Epub 2022 Jul 26.

Abstract

Nitrate uptake in sugarcane roots is regulated at the transcriptional and posttranscriptional levels based on the physiological status of the plant and is likely a determinant mechanism for discrimination against nitrate. Sugarcane (Saccharum spp.) is one of the most suitable energy crops for biofuel feedstock, but the reduced recovery of nitrogen (N) fertilizer by sugarcane roots increases the crop carbon footprint. The low nitrogen use efficiency (NUE) of sugarcane has been associated with the significantly low nitrate uptake, which limits the utilization of the large amount of nitrate available in agricultural soils. To understand the regulation of nitrate uptake in sugarcane roots, we identified the major canonical nitrate transporter genes (NRTs-NITRATE TRANSPORTERS) and then determined their expression profiles in roots under contrasting N conditions. Correlation of gene expression with N-nitrate uptake revealed that under N deprivation or inorganic N (ammonium or nitrate) supply in N-sufficient roots, the regulation of ScNRT2.1 and ScNRT3.1 expression is the predominant mechanism for the modulation of the activity of the nitrate high-affinity transport system. Conversely, in N-deficient roots, the induction of ScNRT2.1 and ScNRT3.1 transcription is not correlated with the marked repression of nitrate uptake in response to nitrate resupply or high N provision, which suggested the existence of a posttranscriptional regulatory mechanism. Our findings suggested that high-affinity nitrate uptake is regulated at the transcriptional and presumably at the posttranscriptional levels based on the physiological N status and that the regulation of NRT2.1 and NRT3.1 activity is likely a determinant mechanism for the discrimination against nitrate uptake observed in sugarcane roots, which contributes to the low NUE in this crop species.

摘要

甘蔗根中的硝酸盐吸收受转录和转录后水平的调控,这取决于植物的生理状态,并且可能是区分硝酸盐的决定机制。甘蔗(Saccharum spp.)是最适合用于生物燃料原料的能源作物之一,但甘蔗根对氮(N)肥的回收效率降低会增加作物的碳足迹。甘蔗的氮利用效率(NUE)低与其硝酸盐吸收量显著降低有关,这限制了农业土壤中大量硝酸盐的利用。为了了解甘蔗根中硝酸盐吸收的调控机制,我们鉴定了主要的经典硝酸盐转运基因(NRTs-NITRATE TRANSPORTERS),然后确定了它们在不同氮条件下根中的表达谱。基因表达与 N-硝酸盐吸收的相关性表明,在氮缺乏或无机氮(铵或硝酸盐)供应条件下,ScNRT2.1 和 ScNRT3.1 表达的调控是调节硝酸盐高亲和力转运系统活性的主要机制。相反,在氮缺乏的根中,ScNRT2.1 和 ScNRT3.1 的转录诱导与硝酸盐再供应或高氮供应时硝酸盐吸收的显著抑制无关,这表明存在转录后调控机制。我们的研究结果表明,高亲和力硝酸盐吸收受转录和可能受转录后水平的调控,这取决于生理氮状态,并且 NRT2.1 和 NRT3.1 活性的调节可能是区分甘蔗根中硝酸盐吸收的决定机制,这导致了该作物物种的低 NUE。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验