Vilchez Victoria, Zhou Shitong, Bouville Florian
Department of Materials, Centre for Advanced Structural Ceramics, Imperial College London, London SW7 2AZ, United Kingdom.
Proc Natl Acad Sci U S A. 2025 Jun 17;122(24):e2422532122. doi: 10.1073/pnas.2422532122. Epub 2025 Jun 11.
Spatial ordering of matter elicits exotic properties sometimes absent from a material's constituents. A few highly mineralized natural materials achieve high toughness through delocalized damage, whereas synthetic particulate composites must trade toughness for mineral content. We test whether ordering the mineral phase in particulate composites through the formation of macroscopic colloidal crystals can trigger the same damage resistance found in natural materials. Our macroscopic silica rod-based anisotropic colloidal crystal composites are processed fully at room temperature and pressure, reach volume fractions of mineral higher than 80%, and aided by a ductile interface, unveil toughness up to two orders of magnitude higher than bulk silica through the collective movement of rods and damage delocalization over millimeter. These composites demonstrate key design rules to break free from conventionally accepted structural materials' properties trade-off.
物质的空间排列会引发一些有时在材料成分中不存在的奇异特性。一些高度矿化的天然材料通过非局部损伤实现了高韧性,而合成颗粒复合材料则必须以韧性换取矿物质含量。我们测试了通过形成宏观胶体晶体来排列颗粒复合材料中的矿物相是否能引发在天然材料中发现的相同抗损伤能力。我们基于宏观二氧化硅棒的各向异性胶体晶体复合材料在室温及常压下完全加工而成,矿物质的体积分数高于80%,并且在韧性界面的辅助下,通过棒的集体运动和毫米级的损伤非局部化,展现出比块状二氧化硅高两个数量级的韧性。这些复合材料展示了关键的设计规则,以摆脱传统上被接受的结构材料的性能权衡。