Suppr超能文献

机器学习驱动合成用于增强析氧反应的包裹氧化钴的杂原子掺杂石墨相氮化碳

Machine Learning Driven Synthesis of Cobalt Oxide Entrapped Heteroatom-Doped Graphitic Carbon Nitride for Enhanced Oxygen Evolution Reaction.

作者信息

Akhdhar Abdullah, Al-Bogami Abdullah S, El-Said Waleed A, Zafar Farhan, Akhtar Naeem

机构信息

College of Science, Department of Chemistry, University of Jeddah, Jeddah, Saudi Arabia.

Institute of Chemical Sciences, Bahauddin Zakariya University (BZU) Multan, Pakistan.

出版信息

PLoS One. 2025 Jun 11;20(6):e0324357. doi: 10.1371/journal.pone.0324357. eCollection 2025.

Abstract

Developing highly efficient electrocatalysts for the oxygen evolution reaction is hindered by sluggish multi-electron kinetics, poor charge transfer efficiency, and limited active site accessibility. Transition metal-based electrocatalysts, such as cobalt oxides, have shown promise. However, poor charge transfer efficiency, limited active site accessibility, and suboptimal interaction with support materials have lowered their oxygen evolution reaction performance. Additionally, optimization of materials remains a complex task, often relying on trial-and-error approaches that do not clearly understand the key features that govern oxygen evolution reaction performance. In this study, we have addressed these challenges through machine learning, which enables the systematic design and optimization of electrocatalysts. By leveraging machine learning, we have developed a highly effective cobalt oxide nanocrystal-based electrocatalyst embedded within sulfur and phosphorus-doped carbon nitride. The homogeneous distribution of cobalt oxide nanocrystals on the sulfur and phosphorus-doped carbon nitride substrate further improves the accessibility of active sites during electrochemical reactions, leading to enhanced oxygen evolution reaction performance. The cobalt oxide sulfur and phosphorus-doped carbon nitride catalyst has shown promising oxygen evolution reaction activity, characterized by a low overpotential of 262 mV, a Tafel slope of 66 mV dec ⁻ ¹, and a high electrochemically active surface area of 140.58 cm². These results highlight the synergistic interaction between cobalt oxide and sulfur and phosphorus-doped carbon nitride, which contributes to the catalyst's superior electrocatalytic performance and provides a promising pathway for the design of advanced oxygen evolution reaction catalysts through machine learning-guided material optimization.

摘要

开发用于析氧反应的高效电催化剂受到多电子动力学缓慢、电荷转移效率低和活性位点可及性有限的阻碍。过渡金属基电催化剂,如氧化钴,已显示出潜力。然而,电荷转移效率低、活性位点可及性有限以及与载体材料的相互作用不理想,降低了它们的析氧反应性能。此外,材料的优化仍然是一项复杂的任务,通常依赖于试错法,而这些方法并不清楚控制析氧反应性能的关键特征。在本研究中,我们通过机器学习解决了这些挑战,机器学习能够对电催化剂进行系统设计和优化。通过利用机器学习,我们开发了一种嵌入硫和磷掺杂氮化碳中的高效氧化钴纳米晶基电催化剂。氧化钴纳米晶在硫和磷掺杂氮化碳基底上的均匀分布进一步提高了电化学反应过程中活性位点的可及性,从而提高了析氧反应性能。氧化钴硫和磷掺杂氮化碳催化剂表现出有前景的析氧反应活性,其特征在于低过电位262 mV、塔菲尔斜率66 mV dec⁻¹和高电化学活性表面积140.58 cm²。这些结果突出了氧化钴与硫和磷掺杂氮化碳之间的协同相互作用,这有助于催化剂具有优异的电催化性能,并为通过机器学习指导的材料优化设计先进的析氧反应催化剂提供了一条有前景的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ee/12157112/df7d96920adb/pone.0324357.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验