Hardman David, Thuruthel Thomas George, Iida Fumiya
Bio-Inspired Robotics Lab, University of Cambridge, Cambridge, UK.
Department of Computer Science, University College London, London, UK.
Sci Robot. 2025 Jun 11;10(103):eadq2303. doi: 10.1126/scirobotics.adq2303.
The human skin can reliably capture a wide range of multimodal data over a large surface while providing a soft interface. Artificial technologies using microelectromechanical systems (MEMS) can emulate these biological functions but present numerous challenges in fabrication, delamination due to soft-rigid interfaces, and electrical interference. To address these difficulties, we present a single-layer multimodal sensory skin made using only a highly sensitive hydrogel membrane. Using electrical impedance tomography techniques, we accessed up to 863,040 conductive pathways across the membrane, allowing us to identify at least six distinct types of multimodal stimuli, including human touch, damage, multipoint insulated presses, and local heating. Through comprehensive physical testing, we demonstrate that the highly redundant and coupled sensory information from these pathways can be structured using data-driven techniques, selecting which pathways should be monitored for efficient multimodal perception. To demonstrate our approach's versatility, we cast the hydrogel into the shape and size of an adult human hand. Using our information structuring strategy, we demonstrate the hand's ability to predict environmental conditions, localize human touch, and generate proprioceptive data. Our framework addresses the challenge of physically extracting meaningful information in multimodal soft sensing, opening new directions for the information-led design of single-layer skins in sensitive systems.
人体皮肤能够在较大的表面可靠地捕获广泛的多模态数据,同时提供柔软的界面。使用微机电系统(MEMS)的人工技术可以模拟这些生物功能,但在制造、由于软硬界面导致的分层以及电气干扰方面存在诸多挑战。为了解决这些难题,我们展示了一种仅使用高灵敏度水凝胶膜制成的单层多模态传感皮肤。利用电阻抗断层扫描技术,我们获取了跨越该膜的多达863,040条导电通路,这使我们能够识别至少六种不同类型的多模态刺激,包括人类触摸、损伤、多点绝缘按压和局部加热。通过全面的物理测试,我们证明来自这些通路的高度冗余和耦合的传感信息可以使用数据驱动技术进行结构化,选择哪些通路应被监测以实现高效的多模态感知。为了展示我们方法的通用性,我们将水凝胶铸造成成人手的形状和尺寸。使用我们的信息结构化策略,我们展示了这只手预测环境条件、定位人类触摸以及生成本体感觉数据的能力。我们的框架解决了在多模态软传感中物理提取有意义信息的挑战,为敏感系统中单层皮肤的信息导向设计开辟了新方向。